Protist Diversity and Eukaryote Phylogeny

  • Living reference work entry
  • First Online:
Handbook of the Protists

Abstract

The last quarter century has seen dramatic changes in our understanding of the phylogenetic relationships among protist groups and their evolutionary history. This is due in large part to the maturation of molecular phylogenetics, to genomics and transcriptomics becoming widely used tools, and to ongoing and accelerating progress in characterizing the major lineages of protists in the biosphere. As an introduction to the Handbook of the Protists, Second Edition, we provide a brief account of the diversity of protistan eukaryotes, set within the context of eukaryote phylogeny as currently understood. Most protist lineages can be assigned to one of a handful of major grou**s (“supergroups”). These include Archaeplastida (which also includes land plants), Sar (including Stramenopiles/Heterokonta, Alveolata, and Rhizaria), Discoba, Metamonada, Amoebozoa, and Obazoa. This last group in turn contains Opisthokonta, the clade that includes both animals and fungi. Many, but not all, of the deeper-level phylogenetic relationships within these groups are now resolved. Additional well-known groups that are related to Archaeplastida and/or Sar include Cryptista (cryptophyte algae and their relatives), Haptophyta, and Centrohelida, among others. Another set of protist lineages are probably most closely related to Amoebozoa and Obazoa, including Ancyromonadida and perhaps Malawimonadidae (though the latter may well be more closely related to Metamonada). The bulk of the known diversity of protists is covered in the following 43 chapters of the Handbook of the Protists; here we also briefly introduce those lineages that are not covered in later chapters.

The Handbook is both a community resource and a guidebook for future research by scientists working in diverse areas, including protistology, phycology, microbial ecology, cell biology, and evolutionary genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adl, S. M., Simpson, A. G. B., Lane, C. E., Lukes, J., Bass, D., Bowser, S. S., Brown, M. W., Burki, F., Dunthorn, M., Hampl, V., Heiss, A. A., Hoppenrath, M., Lara, E., le Gall, L., Lynn, D. H., McManus, H., Mitchell, E. A. D., Mozley-Stanridge, S. E., Parfrey, L. W., Pawlowski, J., Rueckert, S., Shadwick, L., Schoch, C. L., Smirnov, A., & Spiegel, F. W. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59, 429–493.

    Article  PubMed  PubMed Central  Google Scholar 

  • Archibald, J. M. (2015). Genomic perspectives on the birth and spread of plastids. Proceedings of the National Academy of Sciences USA, 112, 10147–10153.

    Article  CAS  Google Scholar 

  • Baldauf, S. L., Roger, A. J., Wenk-Siefert, I., & Doolittle, W. F. (2000). A kingdom-level phylogeny of eukaryotes based on combined protein data. Science, 290, 972–977.

    Article  CAS  PubMed  Google Scholar 

  • Bass, D., Chao, E. E., Nikolaev, S., Yabuki, A., Ishida, K., Berney, C., Pakzad, U., Wylezich, C., & Cavalier-Smith, T. (2009). Phylogeny of novel naked filose and reticulose Cercozoa: Granofilosea cl. n. and Proteomyxidea revised. Protist, 160, 75–109.

    Article  PubMed  Google Scholar 

  • Berney, C., Romac, S., Mahe, F., Santini, S., Siano, R., & Bass, D. (2013). Vampires in the oceans: Predatory cercozoan amoebae in marine habitats. The ISME Journal, 7, 2387–2399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berney, C., Geisen, S., Van Wichelen, J., Nitsche, F., Vanormelingen, P., Bonkowski, M., & Bass, D. (2015). Expansion of the ‘reticulosphere’: Diversity of novel branching and network-forming amoebae helps to define Variosea (Amoebozoa). Protist, 166, 271–295.

    Article  PubMed  Google Scholar 

  • Brown, M. W., Spiegel, F. W., & Silberman, J. D. (2009). Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Molecular Biology and Evolution, 26, 2699–2709.

    Article  CAS  PubMed  Google Scholar 

  • Brown, M. W., Kolisko, M., Silberman, J. D., & Roger, A. J. (2012). Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria. Current Biology, 22, 1123–1127.

    Article  CAS  PubMed  Google Scholar 

  • Brown, M. W., Sharpe, S. C., Silberman, J. D., Heiss, A. A., Lang, B. F., Simpson, A. G. B., & Roger, A. J. (2013). Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proceedings of the Royal Society of London B, 280, 20131755.

    Article  Google Scholar 

  • Burki, F. (2014). The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harbour Perspectives in Biology, 6, a016147.

    Article  Google Scholar 

  • Burki, F., & Keeling, P. J. (2014). Rhizaria. Current Biology, 24, R103–R107.

    Article  CAS  PubMed  Google Scholar 

  • Burki, F., Shalchian-Tabrizi, K., Minge, M., Skjaeveland, A., Nikolaev, S. I., Jakobsen, K. S., & Pawlowski, J. (2007). Phylogenomics reshuffles the eukaryotic supergroups. PloS One, 2, e790.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burki, F., Kaplan, M., Tikhonenkov, D. V., Zlatogursky, V., Minh, B. Q., Radaykina, L. V., Smirnov, A., Mylnikov, A. P., & Keeling, P. J. (2016). Untangling the early diversification of eukaryotes: A phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proceedings of the Royal Society B, 283, 20152802.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavalier-Smith, T. (1987). The origin of Fungi and pseudofungi. In A. D. M. Rayner (Ed.), Evolutionary biology of the fungi (pp. 339–353). Cambridge: Cambridge University Press.

    Google Scholar 

  • Cavalier-Smith, T. (2010). Origin of the cell nucleus, mitosis and sex: Roles of intracellular coevolution. Biology Direct, 5, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavalier-Smith, T. (2013). Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. European Journal of Protistology, 49, 115–178.

    Article  PubMed  Google Scholar 

  • Cavalier-Smith, T., & Scoble, J. M. (2013). Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes. European Journal of Protistology, 49, 328–353.

    Article  PubMed  Google Scholar 

  • Cavalier-Smith, T., Chao, E. E., Snell, E. A., Berney, C., Fiore-Donno, A. M., & Lewis, R. (2014). Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Molecular Phylogenetics and Evolution, 81, 71–85.

    Article  PubMed  Google Scholar 

  • Cavalier-Smith, T., Chao, E. E., & Lewis, R. (2015). Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista. Molecular Phylogenetics and Evolution, 93, 331–362.

    Article  PubMed  Google Scholar 

  • Cavalier-Smith, T., Chao, E. E., & Lewis, R. (2016). 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. Molecular Phylogenetics and Evolution, 99, 275–296.

    Article  PubMed  Google Scholar 

  • David, V., & Archibald, J. M. (2016). Evolution: Plumbing the depths of diplonemid diversity. Current Biology, 26, R1272–R1296.

    Article  Google Scholar 

  • de Mendoza, A., Sebé-Pedrós, A., & Ruiz-Trillo, I. (2014). The evolution of the GPCR signaling system in eukaryotes: Modularity, conservation, and the transition to metazoan multicellularity. Genome Biology and Evolution, 6, 606–619.

    Article  PubMed  PubMed Central  Google Scholar 

  • Derelle, R., & Lang, B. F. (2012). Rooting the eukaryote tree with mitochondrial and bacterial proteins. Molecular Biology and Evolution, 29, 1277–1289.

    Article  CAS  PubMed  Google Scholar 

  • Derelle, R., Torruella, G., Klimes, V., Brinkmann, H., Kim, E., Vlček, Č., Lang, B. F., & Eliás, M. (2015). Bacterial proteins pinpoint a single eukaryotic root. Proceedings of the National Academy of Sciences USA, 112, 693–699.

    Article  Google Scholar 

  • Derelle, R., López-García, P., Timpano, H., & Moreira, D. (2016). A phylogenomic framework to study the diversity and evolution of stramenopiles (=heterokonts). Molecular Biology and Evolution, 33, 2890–2898.

    Article  PubMed  Google Scholar 

  • Flegontova, O., Flegontov, P., Malviya, S., Audic, S., Wincker, P., de Vargas, C., Bowler, C., Lukeš, J., & Horák, A. (2016). Extreme diversity of diplonemid eukaryotes in the ocean. Current Biology, 26, 3060–3065.

    Article  CAS  PubMed  Google Scholar 

  • Foissner, I., & Foissner, W. (1993). Revision of the family Spironemidae Doflein (Protista, Hemimastigophora), with description of 2 new species, Spironema terricola n. sp. and Stereonema geiseri n. g., n. sp. Journal of Eukaryotic Microbiology, 40, 422–438.

    Article  Google Scholar 

  • Gawryluk, R. M., del Campo, J., Okamoto, N., Strassert, J. F., Lukeš, J., Richards, T. A., Worden, A. Z., Santoro, A. E., & Keeling, P. J. (2016). Morphological identification and single-cell genomics of marine diplonemids. Current Biology, 26, 3053–3059.

    Article  CAS  PubMed  Google Scholar 

  • Glockling, S. L., Marshall, W. L., & Gleason, F. H. (2013). Phylogenetic interpretations and ecological potentials of the Mesomycetozoea (Ichthyosporea). Fungal Ecology, 6, 237–247.

    Article  Google Scholar 

  • Glücksman, E., Snell, E. A., Berney, C., Chao, E. E., Bass, D., & Cavalier-Smith, T. (2011). The novel marine gliding zooflagellate genus Mantamonas (Mantamonadida ord. n.: Apusozoa). Protist, 162, 207–221.

    Article  PubMed  Google Scholar 

  • Hackett, J. D., Yoon, H. S., Li, S., Reyes-Prieto, A., Rümmele, S. E., & Bhattacharya, D. (2007). Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with chromalveolates. Molecular Biology and Evolution, 24, 1702–1713.

    Article  CAS  PubMed  Google Scholar 

  • Hampl, V., Hug, L., Leigh, J., Dacks, J. B., Lang, B. F., Simpson, A. G. B., & Roger, A. J. (2009). Taxon-rich phylogenomic analyses support the monophyly of Excavata and robustly resolve relationships among eukaryotic “supergroups”. Proceedings of the National Academy of Sciences USA, 106, 3859–3864.

    Article  CAS  Google Scholar 

  • Hartikainen, H., Stentiford, G. D., Bateman, K. S., Berney, C., Feist, S. W., Longshaw, M., Okamura, B., Stone, D., Ward, G., Wood, C., & Bass, D. (2014). Mikrocytids are a broadly distributed and divergent radiation of parasites in aquatic invertebrates. Current Biology, 24, 807–812.

    Article  CAS  PubMed  Google Scholar 

  • He, D., Fiz-Palacios, O., Fu, C., Fehling, J., Tsai, C. C., & Baldauf, S. L. (2014). An alternative root for the eukaryote tree of life. Current Biology, 24, 465–470.

    Article  CAS  PubMed  Google Scholar 

  • Heiss, A. A., Walker, G., & Simpson, A. G. B. (2013). The microtubular cytoskeleton of the apusomonad Thecamonas, a sister lineage to the opisthokonts. Protist, 164, 598–621.

    Article  PubMed  Google Scholar 

  • Hess, S., Sausen, N., & Melkonian, M. (2012). Shedding light on vampires: The phylogeny of vampyrellid amoebae revisited. PloS One, 7, e31165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges, M. E., Scheumann, N., Wickstead, B., Langdale, J. A., & Gull, K. (2010). Reconstructing the evolutionary history of the centriole from protein components. Journal of Cell Science, 123, 1407–1413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe, A. T., Bass, D., Scoble, J. M., Lewis, R., Vickerman, K., Arndt, H., & Cavalier-Smith, T. (2011). Novel cultured protists identify deep-branching environmental DNA clades of Cercozoa: New genera Tremula, Micrometopion, Minimassisteria, Nudifila, Peregrinia. Protist, 162, 332–372.

    Article  PubMed  Google Scholar 

  • James, T. Y., & Berbee, M. L. (2012). No jacket required – New fungal lineage defies dress code. BioEssays, 34, 94–102.

    Article  CAS  PubMed  Google Scholar 

  • Janouškovec, J., Tikhonenkov, D. V., Burki, F., Howe, A. T., Kolísko, M., Mylnikov, A. P., & Keeling, P. J. (2015). Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proceedings of the National Academy of Sciences USA, 112, 10200–10207.

    Article  Google Scholar 

  • Kamikawa, R., Kolisko, M., Nishimura, Y., Yabuki, A., Brown, M. W., Ishikawa, S. A., Ishida, K., Roger, A. J., Hashimoto, T., & Inagaki, Y. (2014). Gene content evolution in discobid mitochondria deduced from the phylogenetic position and complete mitochondrial genome of Tsukubamonas globosa. Genome Biology and Evolution, 6, 306–315.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karpov, S. A., Mamkaeva, M. A., Aleoshin, V. V., Nassonova, E., Lilje, O., & Gleason, F. H. (2014). Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Frontiers in Microbiology, 5, 112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Katz, L. A., Grant, J. R., Parfrey, L. W., & Burleigh, J. G. (2012). Turning the crown upside down: Gene tree parsimony roots the eukaryotic tree of life. Systematic Biology, 61, 653–660.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keeling, P. J. (2013). The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annual Review of Plant Biology, 64, 583–607.

    Article  CAS  PubMed  Google Scholar 

  • Kim, E., Harrison, J. W., Sudek, S., Jones, M. D., Wilcox, H. M., Richards, T. A., Worden, A. Z., & Archibald, J. M. (2011). Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proceedings of the National Academy of Sciences USA, 108, 1496–1500.

    Article  CAS  Google Scholar 

  • Kosakyan, A., Gomaa, F., Lara, E., & Lahr, D. J. (2016). Current and future perspectives on the systematics, taxonomy and nomenclature of testate amoebae. European Journal of Protistology, 55, 105–117.

    Article  PubMed  Google Scholar 

  • Krabberød, A. K., Orr, R., Bråte, J., Kristensen, T., Bjørklund, K. R., & Shalchian-Tabrizi, K. (2017). Single cell transcriptomics, mega-phylogeny and the genetic basis of morphological innovations in Rhizaria. Molecular Biology and Evolution. doi:10.1093/molbev/msx075.

    Google Scholar 

  • Lang, B. F., Burger, G., O’Kelly, C. J., Cedergren, R., Golding, G. B., Lemieux, C., Sankoff, D., Turmel, M., & Gray, M. W. (1997). An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature, 387, 493–497.

    Article  CAS  PubMed  Google Scholar 

  • Leger, M. M., Kolisko, M., Kamikawa, R., Stairs, C. W., Kume, K., Čepicka, I., Silberman, J. D., Andersson, J. O., Xu, F., Yabuki, A., Eme, L., Zhang, Q., Takishita, K., Inagaki, Y., Simpson, A. G. B., Hashimoto, T., & Roger, A. J. (2017). Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nature Ecology and Evolution, 1, 0092.

    Article  PubMed  Google Scholar 

  • Leliaert, F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F., & De Clerck, O. (2012). Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 31, 1–46.

    Article  Google Scholar 

  • Margulis, L., Corliss, J. O., Melkonian, M., & Chapman, D. J. (Eds.). (1990). Handbook of Protoctista. Sudbury: Jones and Bartlett Publishers, Inc.

    Google Scholar 

  • Massana, R., del Campo, J., Sieracki, M. E., Audic, S., & Logares, R. (2014). Exploring the uncultured microeukaryote majority in the oceans: Reevaluation of ribogroups within stramenopiles. ISME Journal, 8, 854–866.

    Article  PubMed  Google Scholar 

  • Moore, R. B., Oborník, M., Janouškovec, J., Chrudimský, T., Vancová, M., Green, D. H., Wright, S. W., Davies, N. W., Bolch, C. J., Heimann, K., Slapeta, J., Hoegh-Guldberg, O., Logsdon, J. M., & Carter, D. A. (2008). A photosynthetic alveolate closely related to apicomplexan parasites. Nature, 451, 959–963.

    Article  CAS  PubMed  Google Scholar 

  • Moreira, D., & López-García, P. (2014). The rise and fall of picobiliphytes: How assumed autotrophs turned out to be heterotrophs. BioEssays, 36, 468–474.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreira, S., Valach, M., Aoulas-Aissa, M., Otto, C., & Burger, G. (2016). Novel modes of RNA editing in mitochondria. Nucleic Acids Research, 44, 4907–4919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaev, S. I., Berney, C., Fahrni, J. F., Bolivar, I., Polet, S., Mylnikov, A. P., Aleshin, V. V., Petrov, N. B., & Pawlowski, J. (2004). The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proceedings of the National Academy of Sciences USA, 101, 8066–8071.

    Article  CAS  Google Scholar 

  • Nishimura, Y., Tanifuji, G., Kamikawa, R., Yabuki, A., Hashimoto, T., & Inagaki, Y. (2016). Mitochondrial genome of Palpitomonas bilix: Derived genome structure and ancestral system for cytochrome c maturation. Genome Biology and Evolution, 13, 3090–3098.

    Article  Google Scholar 

  • Not, F., Valentin, K., Romari, K., Lovejoy, C., Massana, R., Töbe, K., Vaulot, D., & Medlin, L. K. (2007). Picobiliphytes: A marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science, 315, 253–255.

    Article  CAS  PubMed  Google Scholar 

  • Nowack, E. C. M. (2014). Paulinella chromatophora − Rethinking the transition from endosymbiont to organelle. Acta Societatis Botanicorum Poloniae, 83, 387–397.

    Article  CAS  Google Scholar 

  • O’Kelly, C. J., & Nerad, T. A. (1999). Malawimonas jakobiformis n. gen., n. sp. (Malawimonadidae n. fam.): A Jakoba-like heterotrophic nanoflagellate with discoidal mitochondrial cristae. Journal of Eukaryotic Microbiology, 46, 522–531.

    Article  Google Scholar 

  • Park, J. S., & Simpson, A. G. B. (2015). Diversity of heterotrophic protists from extremely hypersaline habitats. Protist, 166, 422–437.

    Article  PubMed  Google Scholar 

  • Pawlowski, J., Holzmann, M., & Tyszka, J. (2013). New supraordinal classification of Foraminifera: Molecules meet morphology. Marine Micropaleontology, 100, 1–10.

    Article  Google Scholar 

  • Price, D. C., Chan, C. X., Yoon, H. S., Yang, E. C., Qiu, H., Weber, A. P., Schwacke, R., Gross, J., Blouin, N. A., Lane, C., Reyes-Prieto, A., Durnford, D. G., Neilson, J. A., Lang, B. F., Burger, G., Steiner, J. M., Löffelhardt, W., Meuser, J. E., Posewitz, M. C., Ball, S., Arias, M. C., Henrissat, B., Coutinho, P. M., Rensing, S. A., Symeonidi, A., Doddapaneni, H., Green, B. R., Rajah, V. D., Boore, J., & Bhattacharya, D. (2012). Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science, 335, 843–847.

    Article  CAS  PubMed  Google Scholar 

  • Ramesh, M. A., Malik, S.-B., & Logsdon, J. M. (2005). A phylogenomic inventory of meiotic genes: Evidence for sex in Giardia and an early eukaryotic origin of meiosis. Current Biology, 15, 185–191.

    CAS  PubMed  Google Scholar 

  • Reyes-Prieto, A., Weber, A. P., & Bhattacharya, D. (2007). The origin and establishment of the plastid in algae and plants. Annual Review of Genetics, 41, 147–168.

    Article  CAS  PubMed  Google Scholar 

  • Riisberg, I., Orr, R. J. S., Kluge, R., Shalchian-Tabrizi, K., Bowers, H. A., Patil, V., Edvardsen, B., & Jakobsen, K. S. (2009). Seven gene phylogeny of heterokonts. Protist, 160, 191–204.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Ezpeleta, N., Brinkmann, H., Burger, G., Roger, A. J., Gray, M. W., Philippe, H., & Lang, B. F. (2007). Toward resolving the eukaryotic tree: The phylogenetic positions of jakobids and cercozoans. Current Biology, 17, 1420–1425.

    Article  PubMed  Google Scholar 

  • Seenivasan, R., Sausen, N., Medlin, L. K., & Melkonian, M. (2013). Picomonas judraskeda gen. et sp. nov.: The first identified member of the Picozoa phylum nov., a widespread group of picoeukaryotes, formerly known as ‘picobiliphytes’. PloS One, 8, e59565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shadwick, L., Spiegel, F. W., Shadwick, J. D. L., Brown, M. W., & Silberman, J. D. (2009). Eumycetozoa=Amoebozoa?: SSUrDNA phylogeny of protosteloid slime molds and its significance for the amoebozoan supergroup. PloS One, 4, e6754.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shalchian-Tabrizi, K., Eikrem, W., Klaveness, D., Vaulot, D., Minge, M. A., Le Gall, F., Romari, K., Throndsen, J., Botnen, A., Massana, R., Thomsen, H. A., & Jakobsen, K. S. (2006). Telonemia, a new protist phylum with affinity to chromist lineages. Proceedings of the Royal Society B, 273, 1833–1842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiratori, T., Nakayama, T., & Ishida, K. (2015). A new deep-branching stramenopile, Platysulcus tardus gen. nov., sp. nov. Protist, 166, 337–348.

    Article  CAS  PubMed  Google Scholar 

  • Sierra, R., Matz, M. V., Aglyamova, G., Pillet, L., Decelle, J., Not, F., de Vargas, C., & Pawlowski, J. (2013). Deep relationships of Rhizaria revealed by phylogenomics: A farewell to Haeckel’s Radiolaria. Molecular Phylogenetics and Evolution, 67, 53–59.

    Article  PubMed  Google Scholar 

  • Sierra, R., Cañas-Duarte, S. J., Burki, F., Schwelm, A., Fogelqvist, J., Dixelius, C., González-García, L. N., Gile, G. H., Slamovits, C. H., Klopp, C., Restrepo, S., Arzul, I., & Pawlowski, J. (2016). Evolutionary origins of rhizarian parasites. Molecular Biology and Evolution, 33, 980–983.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, A. G. B. (2003). Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). International Journal of Systematic and Evolutionary Microbiology, 53, 1759–1777.

    Article  PubMed  Google Scholar 

  • Simpson, A. G. B., & Eglit, Y. (2016). Protist diversification. In R. M. Kliman (Ed.), Encyclopedia of evolutionary biology, volume 3 (pp. 344–360). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Taylor, J. W., & Berbee, M. L. (2014). Fungi from PCR to genomics: The spreading revolution in evolutionary biology. In D. J. McLaughlin & J. W. Spatafora (Eds.), The Mycota, volume 7A (pp. 1–18). Berlin: Springer.

    Google Scholar 

  • Tice, A. K., Shadwick, L. L., Fiore-Donno, A. M., Geisen, S., Kang, S., Schuler, G. A., Spiegel, F. W., Wilkinson, K., Bonkowski, M., Dumack, K., Lahr, D. J. G., Voelcker, E., Clauss, S., Zhang, J., & Brown, M. W. (2016). Expansion of the molecular and morphological diversity of Acanthamoebidae (Centramoebida, Amoebozoa) and identification of a novel life cycle type within the group. Biology Direct, 11, 69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tikhonenkov, D. V., Janouškovec, J., Mylnikov, A. P., Mikhailov, K. V., Simdyanov, T. G., Aleoshin, V. V., & Keeling, P. J. (2014). Description of Colponema vietnamica sp.n. And Acavomonas peruviana n. gen. n. sp., two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes. PloS One, 16, e95467.

    Google Scholar 

  • Torruella, G., de Mendoza, A., Grau-Bové, X., Antó, M., Chaplin, M. A., del Campo, J., Eme, L., Pérez-Cordón, G., Whipps, C. M., Nichols, K. M., Paley, R., Roger, A. J., Sitjà-Bobadilla, A., Donachie, S., & Ruiz-Trillo, I. (2015). Phylogenomics reveals convergent evolution of lifestyles in close relatives of animals and fungi. Current Biology, 25, 2404–2410.

    Article  CAS  PubMed  Google Scholar 

  • Van de Peer, Y., & De Wachter, R. (1997). Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA. Journal of Molecular Evolution, 45, 619–630.

    Article  Google Scholar 

  • Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N., Ayyampalayam, S., Barker, M. S., Burleigh, J. G., Gitzendanner, M. A., Ruhfel, B. R., Wafula, E., Der, J. P., Graham, S. W., Mathews, S., Melkonian, M., Soltis, D. E., Soltis, P. S., Miles, N. W., Rothfels, C. J., Pokorny, L., Shaw, A. J., DeGironimo, L., Stevenson, D. W., Surek, B., Villarreal, J. C., Roure, B., Philippe, H., dePamphilis, C. W., Chen, T., Deyholos, M. K., Baucom, R. S., Kutchan, T. M., Augustin, M. M., Wang, J., Zhang, Y., Tian, Z., Yan, Z., Wu, X., Sun, X., Wong, G. K., & Leebens-Mack, J. (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences USA, 111, 4859–4868.

    Article  Google Scholar 

  • Wideman, J. G., & Muñoz-Gómez, S. A. (2016). The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology. Biochimica et Biophysica Acta, 1861, 900–912.

    Article  CAS  PubMed  Google Scholar 

  • Worden, A. Z., Follows, M. J., Giovannoni, S. J., Wilken, S., Zimmerman, A. E., & Keeling, P. J. (2015). Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science, 347, 1257594.

    Article  PubMed  Google Scholar 

  • Yabuki, A., Inagaki, Y., & Ishida, K. (2010). Palpitomonas bilix gen. et sp nov.: A novel deep-branching heterotroph possibly related to Archaeplastida or Hacrobia. Protist, 161, 523–538.

    Article  PubMed  Google Scholar 

  • Yabuki, A., Nakayama, T., Yubuki, N., Hashimoto, T., Ishida, K., & Inagaki, Y. (2011). Tsukubamonas globosa n. gen., n. sp., a novel excavate flagellate possibly holding a key for the early evolution in “Discoba”. Journal of Eukaryotic Microbiology, 58, 319–331.

    Article  PubMed  Google Scholar 

  • Yabuki, A., Eikrem, W., Takishita, K., & Patterson, D. J. (2013a). Fine structure of Telonema subtilis Griessmann, 1913: A flagellate with a unique cytoskeletal structure among eukaryotes. Protist, 164, 556–569.

    Article  CAS  PubMed  Google Scholar 

  • Yabuki, A., Ishida, K., & Cavalier-Smith, T. (2013b). Rigifila ramosa n. gen., n. sp., a filose apusozoan with a distinctive pellicle, is related to Micronuclearia. Protist, 164, 75–88.

    Google Scholar 

  • Yabuki, A., Kamikawa, R., Ishikawa, S. A., Kolisko, M., Kim, E., Tanabe, A. S., Kume, K., Ishida, K., & Inagaki, Y. (2014). Palpitomonas bilix represents a basal cryptist lineage: Insight into the character evolution in Cryptista. Scientific Reports, 4, 4641.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yubuki, N., & Leander, B. S. (2013). Evolution of microtubule organizing centers across the tree of eukaryotes. Plant Journal, 75, 230–244.

    Article  CAS  PubMed  Google Scholar 

  • Yubuki, N., Pánek, T., Yabuki, A., Čepička, I., Takishita, K., Inagaki, Y., & Leander, B. S. (2015). Morphological identities of two different marine stramenopile environmental sequence clades: Bicosoeca kenaiensis (Hilliard, 1971) and Cantina marsupialis (Larsen and Patterson, 1990) gen. nov., comb. nov. Journal of Eukaryotic Microbiology, 62, 532–542.

    Article  PubMed  Google Scholar 

  • Yubuki, N., Zadrobílková, E., & Čepička, I. (2017). Ultrastructure and molecular phylogeny of Iotanema spirale gen. nov. et sp. nov., a new lineage of endobiotic Fornicata with strikingly simplified ultrastructure. Journal of Eukaryotic Microbiology. doi:10.1111/jeu.12376.

    Google Scholar 

  • Zhao, S., Burki, F., Bråte, J., Keeling, P. J., Klaveness, D., & Shalchian-Tabrizi, K. (2012). Collodictyon – An ancient lineage in the tree of eukaryotes. Molecular Biology and Evolution, 29, 1557–1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge valuable comments and suggestions from Martha Powell (University of Alabama), Matthew Brown (Mississippi State University), Fred Spiegel (University of Arkansas), Fabien Burki (Uppsala University), David Bass (Centre for Environment, Fisheries, and Aquaculture Science, UK), Chris Lane (University of Rhode Island), Michelle Leger (Institute of Evolutionary Biology, Barcelona), and Sergio Muñoz-Gómez and Yana Eglit (both Dalhousie University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair G. B. Simpson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Simpson, A.G.B., Slamovits, C.H., Archibald, J.M. (2017). Protist Diversity and Eukaryote Phylogeny. In: Archibald, J., et al. Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32669-6_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32669-6

  • Online ISBN: 978-3-319-32669-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation