Spectral/Fourier Domain Optical Coherence Tomography

  • Reference work entry
Optical Coherence Tomography
  • 10k Accesses

Abstract

Optical coherence tomography is a low-coherence interferometric method for imaging of biological tissue [1, 2]. For more than a decade after its inception between 1988 and 1991, the dominant implementation has been time domain OCT (TD-OCT), in which the length of a reference arm is rapidly scanned. The first spectral or Fourier domain OCT (SD/FD-OCT) implementation was reported in 1995 [3]. In SD-OCT the reference arm is kept stationary, and the depth information is obtained by a Fourier transform of the spectrally resolved interference fringes in the detection arm of a Michelson interferometer. This approach has provided a significant advantage in signal-to-noise ratio (SNR), which despite reports as early as 1997 [4, 5] has taken about half a decade to be recognized fully by the OCT community in 2003 [6–8]. The first demonstration of SD-OCT for in vivo retinal imaging in 2002 [9] was followed by a full realization of the sensitivity advantage by video rate in vivo retinal imaging [10], including high-speed 3-D volumetric imaging [11], ultrahigh-resolution video rate imaging [12, 13], and Doppler blood flow determination in the human retina [14, 15]. The superior sensitivity of SD-OCT, combined with the lack of need for a fast mechanical scanning mechanism, has opened up the possibility of much faster scanning without loss of image quality and provided a paradigm shift from point sampling to volumetric map** of biological tissue in vivo. The technology has been particularly promising for ophthalmology [16, 17]. In this chapter, the principles and system design considerations of SD-OCT will be discussed in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.F. Fercher, K. Mengedoht, W. Werner, Eye-length measurement by interferometry with partially coherent-light. Opt. Lett. 13(3), 186–188 (1988)

    Article  ADS  Google Scholar 

  2. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Article  ADS  Google Scholar 

  3. A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. Elzaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117(1–2), 43–48 (1995)

    Article  ADS  Google Scholar 

  4. G. Hausler, M.W. Lindner, Coherence radar and spectral radar – new tools for dermatological diagnosis. J. Biomed. Opt. 3(1), 21–31 (1998)

    Article  ADS  Google Scholar 

  5. T. Mitsui, Dynamic range of optical reflectometry with spectral interferometry. Jpn. J. Appl. Phys. 38(10), 6133–6137 (1999)

    Article  ADS  Google Scholar 

  6. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 11(8), 889–894 (2003)

    Article  ADS  Google Scholar 

  7. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28(21), 2067–2069 (2003)

    Article  ADS  Google Scholar 

  8. M.A. Choma, M.V. Sarunic, C.H. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11(18), 2183–2189 (2003)

    Article  ADS  Google Scholar 

  9. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A.F. Fercher, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7(3), 457–463 (2002)

    Article  ADS  Google Scholar 

  10. N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, J.F. de Boer, In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt. Lett. 29(5), 480–482 (2004)

    Article  ADS  Google Scholar 

  11. N.A. Nassif, B. Cense, B.H. Park, M.C. Pierce, S.H. Yun, B.E. Bouma, G.J. Tearney, T.C. Chen, J.F. de Boer, In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt. Express 12(3), 367–376 (2004)

    Article  ADS  Google Scholar 

  12. B. Cense, N. Nassif, T.C. Chen, M.C. Pierce, S.H. Yun, B.H. Park, B.E. Bouma, G.J. Tearney, J.F. de Boer, Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express 12(11), 2435–2447 (2004)

    Article  ADS  Google Scholar 

  13. M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, J.S. Duker, Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express 12(11), 2404–2422 (2004)

    Article  ADS  Google Scholar 

  14. R.A. Leitgeb, L. Schmetterer, W. Drexler, A.F. Fercher, R.J. Zawadzki, T. Bajraszewski, Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt. Express 11(23), 3116–3121 (2003)

    Article  ADS  Google Scholar 

  15. B.R. White, M.C. Pierce, N. Nassif, B. Cense, B.H. Park, G.J. Tearney, B.E. Bouma, T.C. Chen, J.F. de Boer, In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt. Express 11(25), 3490–3497 (2003)

    Article  ADS  Google Scholar 

  16. M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, C. Radzewicz, Ophthalmic imaging by spectral optical coherence tomography. Am. J. Ophthalmol. 138(3), 412–419 (2004)

    Article  Google Scholar 

  17. T.C. Chen, B. Cense, M.C. Pierce, N. Nassif, B.H. Park, S.H. Yun, B.R. White, B.E. Bouma, G.J. Tearney, J.F. de Boer, Spectral domain optical coherence tomography – ultra-high speed, ultra-high resolution ophthalmic imaging. Arch. Ophthalmol. 123(12), 1715–1720 (2005)

    Article  Google Scholar 

  18. A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser, Optical coherence tomography – principles and applications. Rep. Prog. Phys. 66(2), 239–303 (2003)

    Article  ADS  Google Scholar 

  19. W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, A.F. Fercher, Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch. Ophthalmol. 121(5), 695–706 (2003)

    Article  Google Scholar 

  20. American National Standards Institute, American National Standard for Safe Use of Lasers Z136.1 (Orlando, 2000)

    Google Scholar 

  21. A.B.. Vakhtin, K.A. Peterson, W.R. Wood, D.J. Kane, Differential spectral interferometry: an imaging technique for biomedical applications. Opt. Lett. 28(15), 1332–1334 (2003)

    Article  ADS  Google Scholar 

  22. W.V. Sorin, D.M. Baney, A simple intensity noise-reduction technique for optical low- coherence reflectometry. IEEE Photon. Technol. Lett. 4(12), 1404–1406 (1992)

    Article  ADS  Google Scholar 

  23. L. Mandel, E. Wolf, Measures of bandwidth and coherence time in optics. Proc. Phys. Soc. Lond. 80(516), 894–897 (1962)

    Article  ADS  Google Scholar 

  24. S.H. Yun, G.J. Tearney, B.E. Bouma, B.H. Park, J.F. de Boer, High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength. Opt. Express 11(26), 3598–3604 (2003)

    Article  ADS  Google Scholar 

  25. R. Tripathi, N. Nassif, J.S. Nelson, B.H. Park, J.F. de Boer, Spectral sha** for non-Gaussian source spectra in optical coherence tomography. Opt. Lett. 27(6), 406–408 (2002)

    Article  ADS  Google Scholar 

  26. B.H. Park, M.C. Pierce, B. Cense, S.H. Yun, M. Mujat, G.J. Tearney, B.E. Bouma, J.F. de Boer, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 mu m. Opt. Express 13(11), 3931–3944 (2005)

    Article  ADS  Google Scholar 

  27. M. Mujat, B.H. Park, B. Cense, T.C. Chen, J.F. de Boer, Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination. J. Biomed. Opt. 12(4), 041205 (2007)

    Article  ADS  Google Scholar 

  28. C.K. Hitzenberger, A. Baumgartner, W. Drexler, A.F. Fercher, Dispersion effects in partial coherence interferometry: implications for intraocular ranging. J. Biomed. Opt. 4(1), 144–151 (1999)

    Article  ADS  Google Scholar 

  29. G.J. Tearney, B.E. Bouma, J.G. Fujimoto, High-speed phase- and group-delay scanning with a grating-based phase control delay line. Opt. Lett. 22(23), 1811–1813 (1997)

    Article  ADS  Google Scholar 

  30. W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, J.G. Fujimoto, In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24(17), 1221–1223 (1999)

    Article  ADS  Google Scholar 

  31. J.F. de Boer, C.E. Saxer, J.S. Nelson, Stable carrier generation and phase-resolved digital data processing in optical coherence tomography. Appl. Optics 40(31), 5787–5790 (2001)

    Article  ADS  Google Scholar 

  32. A.F. Fercher, C.K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, T. Lasser, Dispersion compensation for optical coherence tomography depth- scan signals by a numerical technique. Opt. Commun. 204(1–6), 67–74 (2002)

    Article  ADS  Google Scholar 

  33. A.F. Fercher, C.K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, T. Lasser, Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography. Opt. Express 9(12), 610–615 (2001)

    Article  ADS  Google Scholar 

  34. D.L. Marks, A.L. Oldenburg, J.J. Reynolds, S.A. Boppart, Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media. Appl. Optics 42(2), 204–217 (2003)

    Article  ADS  Google Scholar 

  35. D.L. Marks, A.L. Oldenburg, J.J. Reynolds, S.A. Boppart, Autofocus algorithm for dispersion correction in optical coherence tomography. Appl. Optics 42(16), 3038–3046 (2003)

    Article  ADS  Google Scholar 

  36. D.M. Snodderly, R.S. Weinhaus, J.C. Choi, Neural vascular relationships in central retina of Macaque Monkeys (Macaca-Fascicularis). J. Neurosci. 12(4), 1169–1193 (1992)

    Google Scholar 

  37. J.F. de Boer, Systems and methods for imaging a sample. U.S. Patent 6,980,299, 2005

    Google Scholar 

  38. C. Dorrer, N. Belabas, J.P. Likforman, M. Joffre, Spectral resolution and sampling issues in Fourier-transform spectral interferometry. J. Opt. Soc. Am. B-Opt. Phys. 17(10), 1795–1802 (2000)

    Article  ADS  Google Scholar 

  39. S.H. Yun, G.J. Tearney, J.F. de Boer, B.E. Bouma, Motion artifacts in optical coherence tomography with frequency-domain ranging. Opt. Express 12(13), 2977–2998 (2004)

    Article  ADS  Google Scholar 

  40. S.H. Yun, G.J. Tearney, J.F. de Boer, B.E. Bouma, Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts. Opt. Express 12(23), 5614–5624 (2004)

    Article  ADS  Google Scholar 

  41. G. Moneron, A.C. Boccara, A. Dubois, Stroboscopic ultrahigh-resolution full-field optical coherence tomography. Opt. Lett. 30(11), 1351–1353 (2005)

    Article  ADS  Google Scholar 

  42. J.W. You, T.C. Chen, M. Mujat, B.H. Park, J.F. de Boer, Pulsed illumination spectral-domain optical coherence tomography for human retinal imaging. Opt. Express 14(15), 6739–6748 (2006)

    Article  ADS  Google Scholar 

  43. Y.H. Zhao, Z.P. Chen, C. Saxer, S.H. **ang, J.F. de Boer, J.S. Nelson, Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett. 25(2), 114–116 (2000)

    Article  ADS  Google Scholar 

  44. Y.H. Zhao, Z.P. Chen, C. Saxer, Q.M. Shen, S.H. **ang, J.F. de Boer, J.S. Nelson, Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt. Lett. 25(18), 1358–1360 (2000)

    Article  ADS  Google Scholar 

  45. A.M. Rollins, S. Yazdanfar, J.K. Barton, J.A. Izatt, Real-time in vivo color Doppler optical coherence tomography. J. Biomed. Opt. 7(1), 123–129 (2002)

    Article  ADS  Google Scholar 

  46. V. Westphal, S. Yazdanfar, A.M. Rollins, J.A. Izatt, Real-time, high velocity-resolution color Doppler optical coherence tomography. Opt. Lett. 27(1), 34–36 (2002)

    Article  ADS  Google Scholar 

  47. Z.H. Ding, Y.H. Zhao, H.W. Ren, J.S. Nelson, Z.P. Chen, Real-time phase-resolved optical coherence tomography and optical Doppler tomography. Opt. Express 10(5), 236–245 (2002)

    Article  ADS  Google Scholar 

  48. V.X.D. Yang, M.L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B.C. Wilson, I.A. Vitkin, High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance. Opt. Express 11(7), 794–809 (2003)

    Article  ADS  Google Scholar 

  49. S. Yazdanfar, A.M. Rollins, J.A. Izatt, Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. Opt. Lett. 25(19), 1448–1450 (2000)

    Article  ADS  Google Scholar 

  50. S. Yazdanfar, A.M. Rollins, J.A. Izatt, In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Arch. Ophthalmol. 121(2), 235–239 (2003)

    Article  Google Scholar 

  51. R. Leitgeb, L.F. Schmetterer, M. Wojtkowski, C.K. Hitzenberger, M. Sticker, A.F. Fercher, Flow velocity measurements by frequency domain short coherence interferometry. Proc. SPIE 4619 (2002)

    Google Scholar 

  52. S.H. Yun, G.J. Tearney, B.J. Vakoc, M. Shishkov, W.Y. Oh, A.E. Desjardins, M.J. Suter, R.C. Chan, J.A. Evans, I.K. Jang, N.S. Nishioka, J.F. de Boer, B.E. Bouma, Comprehensive volumetric optical microscopy in vivo. Nat. Med. 12(12), 1429–1433 (2006)

    Article  Google Scholar 

  53. E.C.W. Lee, J.F. de Boer, M. Mujat, H. Lim, S.H. Yun, In vivo optical frequency domain imaging of human retina and choroid. Opt. Express 14(10), 4403–4411 (2006)

    Article  ADS  Google Scholar 

  54. H. Lim, J.F. de Boer, B.H. Park, E.C.W. Lee, R. Yelin, S.H. Yun, Optical frequency domain imaging with a rapidly swept laser in the 815–870 nm range. Opt. Express 14(13), 5937–5944 (2006)

    Article  ADS  Google Scholar 

  55. H. Lim, M. Mujat, C. Kerbage, E.C.W. Lee, Y. Chen, T.C. Chen, J.F. de Boer, High-speed imaging of human retina in vivo with swept-source optical coherence tomography. Opt. Express 14(26), 12902–12908 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgment

This research was supported in part by research grants from the National Institutes of Health (1R24 EY12877, R01 EY014975, and RR19768), Department of Defense (F4 9620-01-1-0014), CIMIT, and a gift from Dr. and Mrs. J.S. Chen to the optical diagnostics program of the Wellman Center of Photomedicine. The author would like to thank a number of graduate students and postdoctoral fellows that have contributed to the results presented in this chapter, Barry Cense, Nader Nassif, Brian White, Hyle Park, Jang Woo You, and Mircea Mujat. Special thanks to Teresa Chen, MD, my invaluable collaborator at the Massachusetts Eye and Ear Infirmary, without whom all this work would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes F. de Boer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

de Boer, J.F. (2015). Spectral/Fourier Domain Optical Coherence Tomography. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_6

Download citation

Publish with us

Policies and ethics

Navigation