Borrelia Ecology, Evolution, and Human Disease: A Mosaic of Life

  • Reference work entry
  • First Online:
Zoonoses: Infections Affecting Humans and Animals

Abstract

Lyme borreliosis (LB) and relapsing fever (RF) are zoonotic diseases that are caused by spirochetal bacteria belonging to the genus Borrelia. The agents are generally maintained in natural transmission cycles by vector ticks (exception: body louse) and reservoir hosts. Lyme borreliosis (synonym in North America: Lyme disease, LD) is the most frequently reported tick-borne disease in Europe and North America. It mainly affects skin, large joints, nervous system or heart and is considered a multi-system disorder. Relapsing fever manifests as recurrent febrile attacks accompanied by headaches, muscle and joint aches, interrupted by afebrile intervals. It mainly occurs in tropical and subtropical regions including North and South America, Africa, Asia, and South European countries. In this chapter we describe the genus Borrelia, the huge diversity that has become apparent in recent years, the geographical distribution of its species, and the complex genome that is reflected in the complex ecology and disease symptoms. We also give information on diagnostics and its challenges, therapy, and prophylactic measures.

All authors are members of ESGBOR, European Society for Clinical Microbiology and Infectious Diseases Study Group for Lyme borreliosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aase A, Hajdusek O, Øines Ø, Quarsten H, Wilhelmsson P, Herstad TK, Kjelland V, Sima R, Jalovecka M, Lindgren PE, Aaberge IS (2016) Validate or falsify: Lessons learned from a microscopy method claimed to be useful for detecting Borrelia and Babesia organisms in human blood. Infect Dis (Lond) 48:411–419

    Article  PubMed  Google Scholar 

  • Aguero-Rosenfeld ME, Wang G, Schwartz I, Wormser GP (2005) Diagnosis of Lyme borreliosis. Clin Microbiol Rev 18:484–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amore G, Tomassone L, Grego E, Ragagli C, Bertolotti L, Nebbia P, Rosati S, Mannelli A (2007) Borrelia lusitaniae in immature Ixodes ricinus (Acari: Ixodidae) feeding on common wall lizards in Tuscany, central Italy. J Med Entomol 44:303–307

    Article  PubMed  Google Scholar 

  • Apanaskevich D, Oliver J (2014) Life cycles and natural history of ticks. In: Sonenshine DE, Roe M (eds) Biology of ticks. Oxford University Press, Oxford

    Google Scholar 

  • Arnason S, Skogman BH (2022) Effectiveness of antibiotic treatment in children with Lyme neuroborreliosis - a retrospective study. BMC Pediatr 22:332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asbrink E, Hovmark A (1988) Early and late cutaneous manifestations in Ixodes-borne borreliosis (erythema migrans borreliosis, Lyme borreliosis). Ann N Y Acad Sci 539:4–15

    Article  CAS  PubMed  Google Scholar 

  • Assous MV, Wilamowski A (2009) Relapsing fever borreliosis in Eurasia--forgotten, but certainly not gone! Clin Microbiol Infect 15:407–414

    Article  CAS  PubMed  Google Scholar 

  • Ataliba AC, Resende JS, Yoshinari N, Labruna MB (2007) Isolation and molecular characterization of a Brazilian strain of Borrelia anserina, the agent of fowl spirochaetosis. Res Vet Sci 83:145–149

    Article  CAS  PubMed  Google Scholar 

  • Baarsma ME, van de Schoor FR, Gauw SA, Vrijmoeth HD, Ursinus J, Goudriaan N, Popa CD, Ter Hofstede HJ, Leeflang MM, Kremer K, van den Wijngaard CC, Kullberg BJ, Joosten LA, Hovius JW (2022) Diagnostic parameters of cellular tests for Lyme borreliosis in Europe (VICTORY study): a case-control study. Lancet Infect Dis 22:1388–1396

    Article  CAS  PubMed  Google Scholar 

  • Balmelli T, Piffaretti JC (1995) Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res Microbiol 146:329–340

    Article  CAS  PubMed  Google Scholar 

  • Baneth G, Nachum-Biala Y, Halperin T, Hershko Y, Kleinerman G, Anug Y, Abdeen Z, Lavy E, Aroch I, Straubinger RK (2016) Borrelia persica infection in dogs and cats: clinical manifestations, clinicopathological findings and genetic characterization. Parasit Vectors 9:244

    Article  PubMed  PubMed Central  Google Scholar 

  • Baneth G, Dvorkin A, Ben-Shitrit B, Kleinerman G, Salant H, Straubinger RK, Nachum-Biala Y (2022) Infection and seroprevalence of Borrelia persica in domestic cats and dogs in Israel. Parasit Vectors 15:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baradaran-Dilmaghani R, Stanek G (1996) In vitro susceptibility of thirty Borrelia strains from various sources against eight antimicrobial chemotherapeutics. Infection 24:60–63

    Article  CAS  PubMed  Google Scholar 

  • Baranton G, Postic D, Saint Girons I, Boerlin P, Piffaretti JC, Assous M, Grimont PA (1992) Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol 42:378–383

    Google Scholar 

  • Barbour AG (1984) Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521–525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbour AG (2016) Chromosome and plasmids of the tick-borne relapsing fever agent Borrelia hermsii. Genome Announc 4:e00528

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbour AG, Garon CF (1987) Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends. Science 237:409–411

    Article  CAS  PubMed  Google Scholar 

  • Barbour AG, Hayes SF (1986) Biology of Borrelia species. Microbiol Rev 50:381–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbour AG, Maupin GO, Teltow GJ, Carter CJ, Piesman J (1996) Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: possible agent of a Lyme disease-like illness. J Infect Dis 173(2):403–409. https://doi.org/10.1093/infdis/173.2.403. PMID: 8568302

  • Barbour AG, Dai Q, Restrepo BI, Stoenner HG, Frank SA (2006) Pathogen escape from host immunity by a genome program for antigenic variation. Proc Natl Acad Sci U S A 103:18290–18295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker NS, Margos G, Blum H, Krebs S, Graf A, Lane RS, Castillo-Ramirez S, Sing A, Fingerle V (2016) Recurrent evolution of host and vector association in bacteria of the Borrelia burgdorferi sensu lato species complex. BMC Genomics 17:734

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker NS, Rollins RE, Nosenko K, Paulus A, Martin S, Krebs S, Takano A, Sato K, Kovalev SY, Kawabata H, Fingerle V, Margos G (2020) High conservation combined with high plasticity: genomics and evolution of Borrelia bavariensis. BMC Genomics 21:702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berende A, ter Hofstede HJ, Vos FJ, van Middendorp H, Vogelaar ML, Tromp M, van den Hoogen FH, Donders AR, Evers AW, Kullberg BJ (2016) Randomized trial of longer-term therapy for symptoms attributed to Lyme disease. N Engl J Med 374:1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Bergey DH (1925) Bergey’s manual of determinative bacteriology. The Williams & Wilkins Comparny, Baltimore

    Google Scholar 

  • Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1925) Bergey’s Manual of Determinative Bacteriology, 2nd ed. The Williams & Wilkins Co, Baltimore

    Google Scholar 

  • Berglund J, Eitrem R, Ornstein K, Lindberg A, Ringér A, Elmrud H, Carlsson M, Runehagen A, Svanborg C, Norrby R (1995) An epidemiologic study of Lyme disease in southern Sweden. N Engl J Med 333:1319–1327

    Article  CAS  PubMed  Google Scholar 

  • Bermúdez SE, Armstrong BA, Domínguez L, Krishnavajhala A, Kneubehl AR, Gunter SM, Replogle A, Petersen JM, Lopez JE (2021) Isolation and genetic characterization of a relapsing fever spirochete isolated from Ornithodoros puertoricensis collected in central Panama. PLoS Negl Trop Dis 15:e0009642

    Article  PubMed  PubMed Central  Google Scholar 

  • Berström S, Zückert WR (2010) Structure, function and biogenesis of the Borrelia cell envelope. In: Samuels DS, Radolf JD (eds) Borrelia: Molecular biology, host interaction and pathogenesis. Caister Academic Press, Poole

    Google Scholar 

  • Binetruy F, Garnier S, Boulanger N, Talagrand-Reboul É, Loire E, Faivre B, Noël V, Buysse M, Duron O (2020) A novel Borrelia species, intermediate between Lyme disease and relapsing fever groups, in neotropical passerine-associated ticks. Sci Rep 10:10596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biskup UG, Strle F, Ruzic-Sabljic E (2011) Loss of plasmids of Borrelia burgdorferi sensu lato during prolonged in vitro cultivation. Plasmid 66:1–6

    Article  CAS  PubMed  Google Scholar 

  • Blazejak K, Raulf MK, Janecek E, Jordan D, Fingerle V, Strube C (2018) Shifts in Borrelia burgdorferi (s.l.) geno-species infections in Ixodes ricinus over a 10-year surveillance period in the city of Hanover (Germany) and Borrelia miyamotoi-specific Reverse Line Blot detection. Parasit Vectors 11:304

    Article  PubMed  Google Scholar 

  • Boden K, Lobenstein S, Hermann B, Margos G, Fingerle V (2016) Borrelia miyamotoi-associated neuroborreliosis in immunocompromised person. Emerg Infect Dis 22:1617–1620

    Article  PubMed  PubMed Central  Google Scholar 

  • Borg R, Dotevall L, Hagberg L, Maraspin V, Lotric-Furlan S, Cimperman J, Strle F (2005) Intravenous ceftriaxone compared with oral doxycycline for the treatment of Lyme neuroborreliosis. Scand J Infect Dis 37:449–454

    Article  CAS  PubMed  Google Scholar 

  • Branda JA, Lemieux JE, Blair L, Ahmed AA, Hong DK, Bercovici S, Blauwkamp TA, Hollemon D, Ho C, Strle K, Damle NS, Lepore TJ, Pollock NR (2021) Detection of Borrelia burgdorferi cell-free DNA in human plasma samples for improved diagnosis of early Lyme borreliosis. Clin Infect Dis 73:e2355–e2e61

    Article  CAS  PubMed  Google Scholar 

  • Bregnard C, Rais O, Voordouw MJ (2020) Climate and tree seed production predict the abundance of the European Lyme disease vector over a 15-year period. Parasit Vectors 13:408

    Article  PubMed  PubMed Central  Google Scholar 

  • Bremell D, Dotevall L (2014) Oral doxycycline for Lyme neuroborreliosis with symptoms of encephalitis, myelitis, vasculitis or intracranial hypertension. Eur J Neurol 21:1162–1167

    Article  CAS  PubMed  Google Scholar 

  • Brown RN, Lane RS (1994) Natural and experimental Borrelia burgdorferi infections in woodrats and deer mice from California. J Wildl Dis 30:389–398

    Article  CAS  PubMed  Google Scholar 

  • Brown RN, Peot MA, Lane RS (2006) Sylvatic maintenance of Borrelia burgdorferi (Spirochaetales) in Northern California: untangling the web of transmission. J Med Entomol 43:743–751

    Article  CAS  PubMed  Google Scholar 

  • Brumpt E (1922) Les Spirochetoses. In: Roger GH, Widal F, Teissier PJ (eds) Nouveau Traité de Mèdecine, Masson, Paris, pp 491–531

    Google Scholar 

  • Bryceson AD, Parry EH, Perine PL, Warrell DA, Vukotich D, Leithead CS (1970) Louse-borne relapsing fever. Q J Med 39:129–170

    CAS  PubMed  Google Scholar 

  • Buonomo A, Nucera E, Pecora V, Rizzi A, Aruanno A, Pascolini L, Ricci AG, Colagiovanni A, Schiavino D (2014) Cross-reactivity and tolerability of cephalosporins in patients with cell-mediated allergy to penicillins. J Investig Allergol Clin Immunol 24:331–337

    CAS  PubMed  Google Scholar 

  • Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP (1982) Lyme disease-a tick-borne spirochetosis? Science 216:1317–1319

    Article  CAS  PubMed  Google Scholar 

  • Butler T (2017) The Jarisch-Herxheimer reaction after antibiotic treatment of spirochetal infections: A review of recent cases and our understanding of pathogenesis. Am J Trop Med Hyg 96:46–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler CM, Houwers DJ, Jongejan F, van der Kolk JH (2005) Borrelia burgdorferi infections with special reference to horses. A review. Vet Q 27:146–156

    Article  CAS  PubMed  Google Scholar 

  • CAB International (2002). https://www.cabi.org/isc/datasheet/91634. Borrelia anserina infections: original text by M.B. Labruna

  • Canica MM, Nato F, du Merle L, Mazie JC, Baranton G, Postic D (1993) Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scand J Infect Dis 25:441–448

    Google Scholar 

  • Carley JG, Pope JH (1962) A new species of Borrelia (B. queenslandica) from Rattus villosissimus in Queensland. Aust J Exp Biol Med Sci 40:255–261. https://doi.org/10.1038/icb.1962.29. PMID: 13876596

  • Carlsson H, Ekerfelt C, Henningsson AJ, Brudin L, Tjernberg I (2018) Subclinical Lyme borreliosis is common in south-eastern Sweden and may be distinguished from Lyme neuroborreliosis by sex, age and specific immune marker patterns. Ticks Tick Borne Dis 9:742–748

    Article  PubMed  Google Scholar 

  • Casjens S, Murphy M, DeLange M, Sampson L, van Vugt R, Huang WM (1997) Telomeres of the linear chromosomes of Lyme disease spirochaetes: nucleotide sequence and possible exchange with linear plasmid telomeres. Mol Microbiol 26:581–596

    Article  CAS  PubMed  Google Scholar 

  • Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson RJ, Haft D, Hickey E, Gwinn M, White O, Fraser CM (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35:490–516

    Article  CAS  PubMed  Google Scholar 

  • Casjens S, Eggers CH, Schwartz I (2010) Borrelia genomics: Chromosome, plasmids, bacteriohpages and genetic variation. In: Samuels DS, Radolf J (eds) Borrelia - Molecular biology, host interaction and pathogenesis. Caister Academic Press

    Google Scholar 

  • Casjens SR, Mongodin EF, Qiu WG, Luft BJ, Schutzer SE, Gilcrease EB, Huang WM, Vujadinovic M, Aron JK, Vargas LC, Freeman S, Radune D, Weidman JF, Dimitrov GI, Khouri HM, Sosa JE, Halpin RA, Dunn JJ, Fraser CM (2012) Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS One 7:e33280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casjens SR, Gilcrease EB, Vujadinovic M, Mongodin EF, Luft BJ, Schutzer SE, Fraser CM, Qiu WG (2017) Plasmid diversity and phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi. BMC Genomics 18:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Casjens SR, Di L, Akther S, Mongodin EF, Luft BJ, Schutzer SE, Fraser CM, Qiu WG (2018) Primordial origin and diversification of plasmids in Lyme disease agent bacteria. BMC Genomics 19:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerar D, Cerar T, Ruzić-Sabljić E, Wormser GP, Strle F (2010) Subjective symptoms after treatment of early Lyme disease. Am J Med 123:79–86

    Article  PubMed  Google Scholar 

  • Cetin E, Sotoudeh M, Auer H, Stanek G (2006) Paradigm Burgenland: risk of Borrelia burgdorferi sensu lato infection indicated by variable seroprevalence rates in hunters. Wien Klin Wochenschr 118:677–681

    Article  PubMed  Google Scholar 

  • Chaconas G, Kobryn K (2010) Structure, function, and evolution of linear replicons in Borrelia. Annu Rev Microbiol 64:185–202

    Article  CAS  PubMed  Google Scholar 

  • Chaconas G, Castellanos M, Verhey TB (2020) Changing of the guard: How the Lyme disease spirochete subverts the host immune response. J Biol Chem 295:301–313

    Article  CAS  PubMed  Google Scholar 

  • Charon NW, Cockburn A, Li C, Liu J, Miller KA, Miller MR, Motaleb MA, Wolgemuth CW (2012) The unique paradigm of spirochete motility and chemotaxis. Annu Rev Microbiol 66:349–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coipan EC, Fonville M, Tijsse-Klasen E, van der Giessen JW, Takken W, Sprong H, Takumi K (2013) Geodemographic analysis of Borrelia burgdorferi sensu lato using the 5S-23S rDNA spacer region. Infect Genet Evol 17:216–222

    Article  CAS  PubMed  Google Scholar 

  • Coipan EC, Jahfari S, Fonville M, Oei GA, Spanjaard L, Takumi K, Hovius JW, Sprong H (2016) Imbalanced presence of Borrelia burgdorferi s.l. multilocus sequence types in clinical manifestations of Lyme borreliosis. Infect Genet Evol 42:66–76

    Article  CAS  PubMed  Google Scholar 

  • Collares-Pereira M, Couceiro S, Franca I, Kurtenbach K, Schafer SM, Vitorino L, Goncalves L, Baptista S, Vieira ML, Cunha C (2004) First isolation of Borrelia lusitaniae from a human patient. J Clin Microbiol 42:1316–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comstedt P, Jakobsson T, Bergström S (2011) Global ecology and epidemiology of Borrelia garinii spirochetes. Infect Ecol Epidemiol 1:9545

    Google Scholar 

  • Cooper GL, Bickford AA (1993) Spirochetosis in California game chickens. Avian Dis 37:1167–1171

    Article  CAS  PubMed  Google Scholar 

  • Cuellar J, Dub T, Sane J, Hytönen J (2020) Seroprevalence of Lyme borreliosis in Finland 50 years ago. Clin Microbiol Infect 26:632–636

    Article  CAS  PubMed  Google Scholar 

  • Cutler SJ (2010) Relapsing fever--a forgotten disease revealed. J Appl Microbiol 108:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Cutler SJ (2015) Relapsing fever borreliae: a global review. Clin Lab Med 35:847–865

    Article  PubMed  Google Scholar 

  • Cutler SJ, Fekade D, Hussein K, Knox KA, Melka A, Cann K, Emilianus AR, Warrell DA, Wright DJ (1994) Successful in-vitro cultivation of Borrelia recurrentis. Lancet 343:242

    Article  CAS  PubMed  Google Scholar 

  • Cutler SJ, Moss J, Fukunaga M, Wright DJ, Fekade D, Warrell D (1997) Borrelia recurrentis characterization and comparison with relapsing-fever, Lyme-associated, and other Borrelia spp. Int J Syst Bacteriol 47:958–968

    Article  CAS  PubMed  Google Scholar 

  • Dai Q, Restrepo BI, Porcella SF, Raffel SJ, Schwan TG, Barbour AG (2006) Antigenic variation by Borrelia hermsii occurs through recombination between extragenic repetitive elements on linear plasmids. Mol Microbiol 60:1329–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis GE (1948) The spirochetes. Annu Rev Microbiol 2(1 vol):305–334. https://doi.org/10.1146/annurev.mi.02.100148.001513. PMID: 18104349

  • Davis GE (1952) Observations on the biology of the argasid tick, Ornithodoros brasiliensis Aragao, 1923; with the recovery of a spirochete, Borrelia brasiliensis, n. sp. J Parasitol 38:473–476

    Google Scholar 

  • Davis GE (1956) A relapsing fever spirochete, Borrelia mazzottii (sp. nov.) from Ornithodoros talaje from Mexico. Am J Hyg 63(1):13–17. https://doi.org/10.1093/oxfordjournals.aje.a119787. PMID: 13282883

  • Davis GE (1957) Order IX. Spirochaetales Buchanan 1918. In: Breed RS, Murray EGD, Smith NR (eds) Bergey’s Manual of Determinative Bacteriology, seventh edition, The Williams & Wilkins Co, Baltimore, pp 892–907

    Google Scholar 

  • de Carvalho IL, Fonseca JE, Marques JG, Ullmann A, Hojgaard A, Zeidner N, Nuncio MS (2008) Vasculitis-like syndrome associated with Borrelia lusitaniae infection. Clin Rheumatol 27:1587–1591

    Article  PubMed  Google Scholar 

  • De Michelis S, Sewell HS, Collares-Pereira M, Santos-Reis M, Schouls LM, Benes V, Holmes EC, Kurtenbach K (2000) Genetic diversity of Borrelia burgdorferi sensu lato in ticks from mainland Portugal. J Clin Microbiol 38:2128–2133

    Article  PubMed  PubMed Central  Google Scholar 

  • Dersch R, Hottenrott T, Senel M, Lehmensiek V, Tumani H, Rauer S, Stich O (2015) The chemokine CXCL13 is elevated in the cerebrospinal fluid of patients with neurosyphilis. Fluids Barriers CNS 12:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dessau RB, Fingerle V, Gray J, Hunfeld KP, Jaulhac B, Kahl O, Kristoferitsch W, Stanek G, Strle F (2014) The lymphocyte transformation test for the diagnosis of Lyme borreliosis has currently not been shown to be clinically useful. Clin Microbiol Infect 20:O786–O787

    Article  CAS  PubMed  Google Scholar 

  • Dessau RB, van Dam AP, Fingerle V, Gray J, Hovius JW, Hunfeld KP, Jaulhac B, Kahl O, Kristoferitsch W, Lindgren PE, Markowicz M, Mavin S, Ornstein K, Rupprecht T, Stanek G, Strle F (2018) To test or not to test? Laboratory support for the diagnosis of Lyme borreliosis: a position paper of ESGBOR, the ESCMID study group for Lyme borreliosis. Clin Microbiol Infect 24:118–124

    Article  CAS  PubMed  Google Scholar 

  • Dsouli N, Younsi-Kabachii H, Postic D, Nouira S, Gern L, Bouattour A (2006) Reservoir role of lizard Psammodromus algirus in transmission cycle of Borrelia burgdorferi sensu lato (Spirochaetaceae) in Tunisia. J Med Entomol 43:737–742

    Article  PubMed  Google Scholar 

  • Due C, Fox W, Medlock JM, Pietzsch M, Logan JG (2013) Tick bite prevention and tick removal. Bmj 347:f7123

    Article  PubMed  Google Scholar 

  • Eggers CH, Samuels DS (1999) Molecular evidence for a new bacteriophage of Borrelia burgdorferi. J Bacteriol 181:7308–7313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggers CH, Kimmel BJ, Bono JL, Elias AF, Rosa P, Samuels DS (2001) Transduction by phiBB-1, a bacteriophage of Borrelia burgdorferi. J Bacteriol 183:4771–4778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehounoud CB, Yao KP, Dahmani M, Achi YL, Amanzougaghene N, Kacou N’Douba A, N’Guessan JD, Raoult D, Fenollar F, Mediannikov O (2016) Multiple pathogens including potential new species in tick vectors in Côte d’Ivoire. PLoS Negl Trop Dis 10:e0004367

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisen L (2020) Vector competence studies with hard ticks and Borrelia burgdorferi sensu lato spirochetes: a review. Ticks Tick Borne Dis 11:101359

    Article  PubMed  Google Scholar 

  • Eisen L, Dolan MC (2016) Evidence for personal protective measures to reduce human contact with blacklegged ticks and for environmentally based control methods to suppress host-seeking blacklegged ticks and reduce infection with Lyme disease spirochetes in tick vectors and rodent reservoirs. J Med Entomol 53:1063–1092

    Article  PubMed  Google Scholar 

  • Eisen L, Eisen RJ, Mun J, Salkeld DJ, Lane RS (2009) Transmission cycles of Borrelia burgdorferi and B. bissettii in relation to habitat type in northwestern California. J Vector Ecol 34:81–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Elbir H, Raoult D, Drancourt M (2013) Relapsing fever borreliae in Africa. Am J Trop Med Hyg 89:288–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Elbir H, Abi-Rached L, Pontarotti P, Yoosuf N, Drancourt M (2014) African relapsing Fever borreliae genomospecies revealed by comparative genomics. Front Public Health 2:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Elbir H, Sitlani P, Bergstrom S, Barbour AG (2017) Chromosome and megaplasmid sequences of Borrelia anserina (Sakharoff 1891), the agant of avian spirochetosis and type species of the genus. Genome Announc 5:e00018

    Article  PubMed  PubMed Central  Google Scholar 

  • Elelu N (2018) Tick-borne relapsing fever as a potential veterinary medical problem. Vet Med Sci 4:271–279

    Article  PubMed  PubMed Central  Google Scholar 

  • Enkelmann J, Böhmer M, Fingerle V, Siffczyk C, Werber D, Littmann M, Merbecks SS, Helmeke C, Schroeder S, Hell S, Schlotthauer U, Burckhardt F, Stark K, Schielke A, Wilking H (2018) Incidence of notified Lyme borreliosis in Germany, 2013-2017. Sci Rep 8:14976

    Article  PubMed  PubMed Central  Google Scholar 

  • Estrada-Peña A, Sprong H, Cabezas-Cruz A, de la Fuente J, Ramo A, Coipan EC (2016) Nested coevolutionary networks shape the ecological relationships of ticks, hosts, and the Lyme disease bacteria of the Borrelia burgdorferi (s.l.) complex. Parasit Vectors 9:517

    Article  PubMed  PubMed Central  Google Scholar 

  • Euzeby JP (2010) Validation list no. 135. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 60:1985–1986

    Google Scholar 

  • Evans J (2000) Lyme disease. Curr Opin Rheumatol 12:311–317

    Article  CAS  PubMed  Google Scholar 

  • Fallon BA, Keilp JG, Corbera KM, Petkova E, Britton CB, Dwyer E, Slavov I, Cheng J, Dobkin J, Nelson DR, Sackeim HA (2008) A randomized, placebo-controlled trial of repeated IV antibiotic therapy for Lyme encephalopathy. Neurology 70:992–1003

    Article  CAS  PubMed  Google Scholar 

  • Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D (2015) Blood-Borne Candidatus Borrelia algerica in a Patient with Prolonged Fever in Oran, Algeria. Am J Trop Med Hyg 93:1070–1073

    Google Scholar 

  • Faulde MK, Rutenfranz M, Keth A, Hepke J, Rogge M, Görner A (2015) Pilot study assessing the effectiveness of factory-treated, long-lasting permethrin-impregnated clothing for the prevention of tick bites during occupational tick exposure in highly infested military training areas, Germany. Parasitol Res 114:671–678

    Article  PubMed  Google Scholar 

  • Fedorova N, Kleinjan JE, James D, Hui LT, Peeters H, Lane RS (2014) Remarkable diversity of tick or mammalian-associated Borreliae in the metropolitan San Francisco Bay Area, California. Ticks Tick Borne Dis 5(6):951–961. https://doi.org/10.1016/j.ttbdis.2014.07.015. PMID: 25129859

  • Felsenfeld O (1965) Borreliae, human relapsing fever, and parasite-vector-host relationships. Bacteriol Rev 29:46–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figoni J, Chirouze C, Hansmann Y, Lemogne C, Hentgen V, Saunier A, Bouiller K, Gehanno JF, Rabaud C, Perrot S, Caumes E, Eldin C, de Broucker T, Jaulhac B, Roblot F, Toubiana J, Sellal F, Vuillemet F, Sordet C, Fantin B, Lina G, Gocko X, Dieudonné M, Picone O, Bodaghi B, Gangneux JP, Degeilh B, Partouche H, Lenormand C, Sotto A, Raffetin A, Monsuez JJ, Michel C, Boulanger N, Cathebras P, Tattevin P (2019) Lyme borreliosis and other tick-borne diseases. Guidelines from the French Scientific Societies (I): prevention, epidemiology, diagnosis. Med Mal Infect 49:318–334

    Article  CAS  PubMed  Google Scholar 

  • Fingerle V, Schulte-Spechtel UC, Ruzic-Sabljic E, Leonhard S, Hofmann H, Weber K, Pfister K, Strle F, Wilske B (2008) Epidemiological aspects and molecular characterization of Borrelia burgdorferi s.l. from southern Germany with special respect to the new species Borrelia spielmanii sp. nov. Int J Med Microbiol 298:279–290

    Article  CAS  PubMed  Google Scholar 

  • Fingerle V, Pritsch M, Wachtler M, Margos G, Ruske S, Jung J, Loscher T, Wendtner C, Wieser A (2016) “Candidatus Borrelia kalaharica” detected from a febrile traveller returning to Germany from vacation in Southern Africa. PLoS Negl Trop Dis 10:e0004559

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer L, Korfel A, Pfeiffer S, Kiewe P, Volk HD, Cakiroglu H, Widmann T, Thiel E (2009) CXCL13 and CXCL12 in central nervous system lymphoma patients. Clin Cancer Res 15:5968–5973

    Article  CAS  PubMed  Google Scholar 

  • Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb JF, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MD, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fuji C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586

    Article  CAS  PubMed  Google Scholar 

  • Fryland L, Wilhelmsson P, Lindgren PE, Nyman D, Ekerfelt C, Forsberg P (2011) Low risk of develo** Borrelia burgdorferi infection in the south-east of Sweden after being bitten by a Borrelia burgdorferi-infected tick. Int J Infect Dis 15:e174–e181

    Article  PubMed  Google Scholar 

  • Fukunaga M, Takahashi Y, Tsuruta Y, Matsushita O, Ralph D, McClelland M, Nakao M (1995) Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the ixodid tick Ixodes persulcatus, the vector for Lyme disease in Japan. Int J Syst Bacteriol 45:804–810

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga M, Hamase A, Okada K, Nakao M (1996) Borrelia tanukii sp. nov. and Borrelia turdae sp. nov. found from ixodid ticks in Japan: rapid species identification by 16S rRNA gene-targeted PCR analysis. Microbiol Immunol 40:877–881

    Google Scholar 

  • Fürst B, Glatz M, Kerl H, Müllegger RR (2006) The impact of immunosuppression on erythema migrans. A retrospective study of clinical presentation, response to treatment and production of Borrelia antibodies in 33 patients. Clin Exp Dermatol 31:509–514

    Article  PubMed  Google Scholar 

  • Gajdacs M (2019) Taxonomy and nomenclature of bacteria with clinical and scientific importance: current concepts for pharmacists and pharmaceutical scientists. Acta Pharmaceutica Hungarica 89:99–108

    Article  Google Scholar 

  • Gevers D, Dawyndt P, Vandamme P, Willems A, Vancanneyt M, Swings J, De Vos P (2006) Step** stones towards a new prokaryotic taxonomy. Philos Trans R Soc Lond B Biol Sci 361:1911–1916

    Article  PubMed  PubMed Central  Google Scholar 

  • Ginsberg HS, Buckley PA, Balmforth MG, Zhioua E, Mitra S, Buckley FG (2005) Reservoir competence of native North American birds for the lyme disease spirochete, Borrelia burgdorferi. J Med Entomol 42:445–449

    Article  PubMed  Google Scholar 

  • Girard YA, Fedorova N, Lane RS (2011) Genetic diversity of Borrelia burgdorferi and detection of B. bissettii-like DNA in serum of north-coastal California residents. J Clin Microbiol 49:945–954

    Article  PubMed Central  Google Scholar 

  • Goddard J (2018) Tick-Borne diseases. In: Georgiev VS (ed) Infectious diseases and arthropods. Humana Press, Totowa

    Chapter  Google Scholar 

  • Goossens HA, Nohlmans MK, van den Bogaard AE (1999) Epstein-Barr virus and cytomegalovirus infections cause false-positive results in IgM two-test protocol for early Lyme borreliosis. Infection 27:231

    Article  CAS  PubMed  Google Scholar 

  • Gray JS, Kahl O, Lane RS, Levin ML, Tsao JI (2016) Diapause in ticks of the medically important Ixodes ricinus species complex. Ticks Tick Borne Dis 7:992–1003

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerrier G, Doherty T (2011) Comparison of antibiotic regimens for treating louse-borne relapsing fever: a meta-analysis. Trans R Soc Trop Med Hyg 105:483–490

    Article  PubMed  Google Scholar 

  • Gugliotta JL, Goethert HK, Berardi VP, Telford SR 3rd. (2013) Meningoencephalitis from Borrelia miyamotoi in an immunocompromised patient. N Engl J Med 368:240–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Güner ES, Hashimoto N, Kadosaka T, Imai Y, Masuzawa T (2003) A novel, fast-growing Borrelia sp. isolated from the hard tick Hyalomma aegyptium in Turkey. Microbiology 149:2539–2544

    Article  PubMed  Google Scholar 

  • Guner ES, Watanabe M, Hashimoto N, Kadosaka T, Kawamura Y, Ezaki T, Kawabata H, Imai Y, Kaneda K, Masuzawa T (2004) Borrelia turcica sp. nov., isolated from the hard tick Hyalomma aegyptium in Turkey. Int J Syst Evol Microbiol 54:1649–1652

    Google Scholar 

  • Guyard C, Raffel SJ, Schrumpf ME, Dahlstrom E, Sturdevant D, Ricklefs SM, Martens C, Hayes SF, Fischer ER, Hansen BT, Porcella SF, Schwan TG (2013) Periplasmic flagellar export apparatus protein, FliH, is involved in post-transcriptional regulation of FlaB, motility and virulence of the relapsing fever spirochete Borrelia hermsii. PLoS One 8:e72550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn CN, Mayhew IG, Whitwell KE, Smith KC, Carey D, Carter SD, Read RA (1996) A possible case of Lyme borreliosis in a horse in the UK. Equine Vet J 28:84–88

    Article  CAS  PubMed  Google Scholar 

  • Han H, Liu J, Wen H, Li Z, Lei S, Qin X, … Yu X (2020) Pathogenic New World Relapsing Fever Borrelia in a Myotis Bat, Eastern China, 2015. Emerg Infect Dis 26(12):3083–3085. https://doi.org/10.3201/eid2612.191450

  • Hanincova K, Taragelova V, Koci J, Schafer SM, Hails R, Ullmann AJ, Piesman J, Labuda M, Kurtenbach K (2003) Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl Environ Microbiol 69:2825–2830

    Article  CAS  PubMed  Google Scholar 

  • Hansen K, Crone C, Kristoferitsch W (2013) Lyme neuroborreliosis. Handb Clin Neurol 115:559–575

    Article  PubMed  Google Scholar 

  • Hartemink NA, Randolph SE, Davis SA, Heesterbeek JA (2008) The basic reproduction number for complex disease systems: defining R(0) for tick-borne infections. Am Nat 171:743–754

    Article  CAS  PubMed  Google Scholar 

  • Henningsson AJ, Lager M, Brännström R, Tjernberg I, Skogman BH (2018) The chemokine CXCL13 in cerebrospinal fluid in children with Lyme neuroborreliosis. Eur J Clin Microbiol Infect Dis 37:1983–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henningsson AJ, Asgeirsson H, Hammas B, Karlsson E, Parke Å, Hoornstra D, Wilhelmsson P, Hovius JW (2019) Two cases of Borrelia miyamotoi meningitis, Sweden, 2018. Emerg Infect Dis 25:1965–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzer P (1991) Joint manifestations of Lyme borreliosis in Europe. Scand J Infect Dis Suppl 77:55–63

    CAS  PubMed  Google Scholar 

  • Hillerdal H, Henningsson AJ (2021) Serodiagnosis of Lyme borreliosis-is IgM in serum more harmful than helpful? Eur J Clin Microbiol Infect Dis 40:1161–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinnebusch J, Bergstrom S, Barbour AG (1990) Cloning and sequence analysis of linear plasmid telomeres of the bacterium Borrelia burgdorferi. Mol Microbiol 4:811–820

    Article  CAS  PubMed  Google Scholar 

  • Hinnebusch BJ, Barbour AG, Restrepo BI, Schwan TG (1998) Population structure of the relapsing fever spirochete Borrelia hermsii as indicated by polymorphism of two multigene families that encode immunogenic outer surface lipoproteins. Infect Immun 66:432–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoch M, Wieser A, Loscher T, Margos G, Purner F, Zuhl J, Seilmaier M, Balzer L, Guggemos W, Rack-Hoch A, von Both U, Hauptvogel K, Schonberger K, Hautmann W, Sing A, Fingerle V (2015) Louse-borne relapsing fever (Borrelia recurrentis) diagnosed in 15 refugees from northeast Africa: epidemiology and preventive control measures, Bavaria, Germany, July to October 2015. Euro Surveill 20:30046

    Article  Google Scholar 

  • Hoen AG, Margos G, Bent SJ, Diuk-Wasser MA, Barbour A, Kurtenbach K, Fish D (2009) Phylogeography of Borrelia burgdorferi in the eastern United States reflects multiple independent Lyme disease emergence events. Proc Natl Acad Sci U S A 106:15013–15018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman HA, Jackson TW (1946) Spirochetosis in turkeys. J Am Vet Med Assoc 109:481–486

    CAS  PubMed  Google Scholar 

  • Hoffman HA, Jackson TW, Rucker JC (1946) Spirochetosis in turkeys (a preliminary report). J Am Vet Med Assoc 108:329–332

    CAS  PubMed  Google Scholar 

  • Hofmann H, Fingerle V, Hunfeld KP, Huppertz HI, Krause A, Rauer S, Ruf B (2017) Cutaneous Lyme borreliosis: Guideline of the German Dermatology Society. Ger Med Sci 15:Doc14

    PubMed  PubMed Central  Google Scholar 

  • Hovind-Hougen K (1974) Electron microscopy of Borrelia merionesi and Borrelia recurrentis. Acta Pathol Microbiol Scand B Microbiol Immunol 82:799–809

    Google Scholar 

  • Hovind-Hougen K (1995) A morphological characterization of Borrelia anserina. Microbiology (Reading) 141(Pt 1):79–83

    Article  CAS  PubMed  Google Scholar 

  • Hovius JW, de Wever B, Sohne M, Brouwer MC, Coumou J, Wagemakers A, Oei A, Knol H, Narasimhan S, Hodiamont CJ, Jahfari S, Pals ST, Horlings HM, Fikrig E, Sprong H, van Oers MH (2013) A case of meningoencephalitis by the relapsing fever spirochaete Borrelia miyamotoi in Europe. Lancet 382:658

    Article  PubMed  PubMed Central  Google Scholar 

  • Huegli D, Moret J, Rais O, Moosmann Y, Erard P, Malinverni R, Gern L (2011) Prospective study on the incidence of infection by Borrelia burgdorferi sensu lato after a tick bite in a highly endemic area of Switzerland. Ticks Tick Borne Dis 2:129–136

    Article  PubMed  Google Scholar 

  • Hunfeld KP, Rödel R, Wichelhaus TA (2003) In vitro activity of eight oral cephalosporins against Borrelia burgdorferi. Int J Antimicrob Agents 21:313–318

    Article  CAS  PubMed  Google Scholar 

  • Hunfeld KP, Wichelhaus TA, Rödel R, Acker G, Brade V, Kraiczy P (2004) Comparison of in vitro activities of ketolides, macrolides, and an azalide against the spirochete Borrelia burgdorferi. Antimicrob Agents Chemother 48:344–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunfeld KP, Ruzic-Sabljic E, Norris DE, Kraiczy P, Strle F (2005) In vitro susceptibility testing of Borrelia burgdorferi sensu lato isolates cultured from patients with erythema migrans before and after antimicrobial chemotherapy. Antimicrob Agents Chemother 49:1294–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova LB, Tomova A, Gonzalez-Acuna D, Murua R, Moreno CX, Hernandez C, Cabello J, Cabello C, Daniels TJ, Godfrey HP, Cabello FC (2014) Borrelia chilensis, a new member of the Borrelia burgdorferi sensu lato complex that extends the range of this genospecies in the Southern Hemisphere. Environ Microbiol 16:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Iyer R, Caimano MJ, Luthra A, Axline D Jr, Corona A, Iacobas DA, Radolf JD, Schwartz I (2015) Stage-specific global alterations in the transcriptomes of Lyme disease spirochetes during tick feeding and following mammalian host adaptation. Mol Microbiol 95:509–538

    Article  CAS  PubMed  Google Scholar 

  • Jakab Á, Kahlig P, Kuenzli E, Neumayr A (2022) Tick borne relapsing fever - a systematic review and analysis of the literature. PLoS Negl Trop Dis 16:e0010212

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaulhac B, Saunier A, Caumes E, Bouiller K, Gehanno JF, Rabaud C, Perrot S, Eldin C, de Broucker T, Roblot F, Toubiana J, Sellal F, Vuillemet F, Sordet C, Fantin B, Lina G, Sobas C, Gocko X, Figoni J, Chirouze C, Hansmann Y, Hentgen V, Cathebras P, Dieudonné M, Picone O, Bodaghi B, Gangneux JP, Degeilh B, Partouche H, Lenormand C, Sotto A, Raffetin A, Monsuez JJ, Michel C, Boulanger N, Lemogne C, Tattevin P (2019) Lyme borreliosis and other tick-borne diseases. Guidelines from the French scientific societies (II). Biological diagnosis, treatment, persistent symptoms after documented or suspected Lyme borreliosis. Med Mal Infect 49:335–346

    Article  CAS  Google Scholar 

  • Jiang B-G, Wu A-Q, Jiang J-F, Yuan T-T, Xu Q, Lv C-L, Chen J-J, Sun Y, Fang L-Q, Ruan X-D et al (2021) Molecular Detection of Novel Borrelia Species, Candidatus Borrelia javanense, in Amblyomma javanense Ticks from Pangolins. Pathogens 10:728. https://doi.org/10.3390/pathogens10060728

  • Johnson RC, Schmidt GP, Hyde FW, Steigerwalt AG, Brenner DJ (1984) Borrelia burgdorferi sp. nov.: etiological agent of Lyme disease. Int J System Bacteriol 34:496–497

    Article  Google Scholar 

  • Johnson RC, Burgdorfer W, Lane RS, Barbour AG, Hayes SF, Hyde FW (1987) Borrelia coriaceae sp. nov.: putative agent of epizootic bovine abortion. Int J Syst Bacteriol 37:72–74

    Google Scholar 

  • Jolley KA, Maiden MC (2010) BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11:595

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaenkan W, Nooma W, Chelong IA, Baimai V, Trinachartvanit W, Ahantarig A (2020) Reptile-associated Borrelia spp. In Amblyomma ticks, Thailand. Ticks Tick Borne Dis 11:101315

    Article  PubMed  Google Scholar 

  • Kahl O, Gern L, Eisen L, Lane RS (2002) Ecological research on Borrelia burgdorferi sensu lato: terminology and some methodological pitfalls. In: Gray JS, Kahl O, Lane RS, Stanek G (eds) Lyme borreliosis: biology, epidemiology and control. CABI Publishing, Wallingford

    Google Scholar 

  • Kahlig P, Neumayr A, Paris DH (2021) Louse-borne relapsing fever-A systematic review and analysis of the literature: Part 2-Mortality, Jarisch-Herxheimer reaction, impact on pregnancy. PLoS Negl Trop Dis 15:e0008656

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalmar Z, Cozma V, Sprong H, Jahfari S, D’Amico G, Marcutan DI, Ionica AM, Magdas C, Modry D, Mihalca AD (2015) Transstadial transmission of Borrelia turcica in Hyalomma aegyptium ticks. PLoS One 10:e0115520

    Article  PubMed  PubMed Central  Google Scholar 

  • Karimi Y, Hovind-Hougen K, Birch-Andersen A, Asmar M (1979) Borrelia persica and B. baltazardi sp. nov.: experimental pathogenicity for some animals and comparison of the ultrastructure. Ann Microbiol (Paris) 130b:157–168

    CAS  PubMed  Google Scholar 

  • Kawabata H, Masuzawa T, Yanagihara Y (1993) Genomic analysis of Borrelia japonica sp. nov. isolated from Ixodes ovatus in Japan. Microbiol Immunol 37(11):843–848. https://doi.org/10.1111/j.1348-0421.1993.tb01714.x. PMID: 7905183

  • Kenedy MR, Scott EJ 2nd, Shrestha B, Anand A, Iqbal H, Radolf JD, Dyer DW, Akins DR (2016) Consensus computational network analysis for identifying candidate outer membrane proteins from Borrelia spirochetes. BMC Microbiol 16:141

    Article  PubMed  PubMed Central  Google Scholar 

  • King DP, Chen CI, Blanchard MT, Aldridge BM, Anderson M, Walker R, Maas J, Hanks D, Hall M, Stott JL (2005) Molecular identification of a novel deltaproteobacterium as the etiologic agent of epizootic bovine abortion (foothill abortion). J Clin Microbiol 43:604–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingry LC (2021) Genomics of Relapsing Fever Spirochetes. In: Radolf JD, Samuels DS (eds) Lyme disease and relapsing fever spirochetes: genomics, molecular biology, host interactions and disease pathogenesis. Caister Academic Press, Poole

    Google Scholar 

  • Kingry LC, Batra D, Replogle A, Rowe LA, Pritt BS, Petersen JM (2016) Whole genome sequence and comparative genomics of the novel Lyme borreliosis causing pathogen, Borrelia mayonii. PLoS One 11:e0168994

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingry LC, Replogle A, Batra D, Rowe LA, Sexton C, Dolan M, Connally N, Petersen JM, Schriefer ME (2017a) Toward a complete North American Borrelia miyamotoi genome. Genome Announc 5:e01557

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingry LC, Replogle A, Dolan M, Sexton C, Padgett KA, Schriefer ME (2017b) Chromosome and large linear plasmid sequences of a Borrelia miyamotoi strain isolated from Ixodes pacificus ticks from California. Genome Announc 5:e00960

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingry LC, Anacker M, Pritt B, Bjork J, Respicio-Kingry L, Liu G, Sheldon S, Boxrud D, Strain A, Oatman S, Berry J, Sloan L, Mead P, Neitzel D, Kugeler KJ, Petersen JM (2018) Surveillance for and discovery of Borrelia species in US patients suspected of tickborne illness. Clin Infect Dis 66:1864–1871

    Article  CAS  PubMed  Google Scholar 

  • Klempner MS, Hu LT, Evans J, Schmid CH, Johnson GM, Trevino RP, Norton D, Levy L, Wall D, McCall J, Kosinski M, Weinstein A (2001) Two controlled trials of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. N Engl J Med 345:85–92

    Article  CAS  PubMed  Google Scholar 

  • Kneubehl AR, Krishnavajhala A, Leal SM, Replogle AJ, Kingry LC, Bermúdez SE, Labruna MB, Lopez JE (2022) Comparative genomics of the Western Hemisphere soft tick-borne relapsing fever borreliae highlights extensive plasmid diversity. BMC Genomics 23:410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobryn K, Chaconas G (2014) Hairpin telomere resolvases. Microbiol Spectr 2

    Google Scholar 

  • Koedel U, Fingerle V, Pfister HW (2015) Lyme neuroborreliosis-epidemiology, diagnosis and management. Nat Rev Neurol 11:446–456

    Article  PubMed  Google Scholar 

  • Krämer F, Hüsken R, Krüdewagen EM, Deuster K, Blagburn B, Straubinger RK, Butler J, Fingerle V, Charles S, Settje T, Schunack B, Stanneck D (2020) Prevention of transmission of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum by Ixodes spp. ticks to dogs treated with the Seresto® collar (imidacloprid 10% + flumethrin 4.5%). Parasitol Res 119:299–315

    Article  PubMed  Google Scholar 

  • Krause PJ, Narsimhan S, Wormser GP, Rollend L, Fikrig E, Lepore T, Barbour A, Fish D (2013) Human Borrelia miyamotoi Infection in the United States. N Engl J Med 368:290–291

    Article  Google Scholar 

  • Krause PJ, Fish D, Narasimhan S, Barbour AG (2015) Borrelia miyamotoi infection in nature and in humans. Clin Microbiol Infect 21:631–639

    Article  CAS  PubMed  Google Scholar 

  • Kristoferitsch W (1991) Neurological manifestations of Lyme borreliosis: clinical definition and differential diagnosis. Scand J Infect Dis Suppl 77:64–73

    CAS  PubMed  Google Scholar 

  • Kristoferitsch W, Aboulenein-Djamshidian F, Jecel J, Rauschka H, Rainer M, Stanek G, Fischer P (2018) Secondary dementia due to Lyme neuroborreliosis. Wien Klin Wochenschr 130:468–478

    Article  PubMed  PubMed Central  Google Scholar 

  • Krupka I, Straubinger RK (2010) Lyme borreliosis in dogs and cats: background, diagnosis, treatment and prevention of infections with Borrelia burgdorferi sensu stricto. Vet Clin North Am Small Anim Pract 40:1103–1119

    Article  PubMed  Google Scholar 

  • Krupp LB, Hyman LG, Grimson R, Coyle PK, Melville P, Ahnn S, Dattwyler R, Chandler B (2003) Study and treatment of post Lyme disease (STOP-LD): a randomized double masked clinical trial. Neurology 60:1923–1930

    Article  CAS  PubMed  Google Scholar 

  • Kugeler KJ, Eisen RJ (2020) Challenges in predicting Lyme disease risk. JAMA Netw Open 3:e200328

    Article  PubMed  PubMed Central  Google Scholar 

  • Kugeler KJ, Schwartz AM, Delorey MJ, Mead PS, Hinckley AF (2021) Estimating the frequency of Lyme disease diagnoses, United States, 2010-2018. Emerg Infect Dis 27:616–619

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuleshov KV, Koetsveld J, Goptar IA, Markelov ML, Kolyasnikova NM, Sarksyan DS, Toporkova MG, Kirdyashkina NP, Shipulin GA, Hovius JW, Platonov AE (2018) Whole-genome sequencing of six Borrelia miyamotoi clinical strains isolated in Russia. Genome Announc 6:e01424

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuleshov KV, Margos G, Fingerle V, Koetsveld J, Goptar IA, Markelov ML, Kolyasnikova NM, Sarksyan DS, Kirdyashkina NP, Shipulin GA, Hovius JW, Platonov AE (2020) Whole genome sequencing of Borrelia miyamotoi isolate Izh-4: reference for a complex bacterial genome. BMC Genomics 21:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai Y, Sato K, Taylor KR, Zamoto-Niikura A, Imaoka K, Morikawa S, Ohnishi M, Kawabata H (2018) A relapsing fever group Borrelia sp. is widely distributed among wild deer in Japan. Ticks Tick Borne Dis 9:465–470

    Article  Google Scholar 

  • Kurtenbach K, Hanincova K, Tsao JI, Margos G, Fish D, Ogden NH (2006) Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat Rev Microbiol 4:660–669

    Article  CAS  PubMed  Google Scholar 

  • Labandeira-Rey M, Skare JT (2001) Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect Immunol 69:446–455

    Article  CAS  Google Scholar 

  • Lakos A, Solymosi N (2010) Maternal Lyme borreliosis and pregnancy outcome. Int J Infect Dis 14:e494–e498

    Article  PubMed  Google Scholar 

  • Lantos PM, Rumbaugh J, Bockenstedt LK, Falck-Ytter YT, Aguero-Rosenfeld ME, Auwaerter PG, Baldwin K, Bannuru RR, Belani KK, Bowie WR, Branda JA, Clifford DB, DiMario FJ, Halperin JJ, Krause PJ, Lavergne V, Liang MH, Meissner HC, Nigrovic LE, Nocton JJJ, Osani MC, Pruitt AA, Rips J, Rosenfeld LE, Savoy ML, Sood SK, Steere AC, Strle F, Sundel R, Tsao J, Vaysbrot EE, Wormser GP, Zemel LS (2021) Clinical practice guidelines by the Infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR): 2020 guidelines for the prevention, diagnosis and treatment of Lyme disease. Clin Infect Dis 72:1–8

    Article  PubMed  Google Scholar 

  • Le Fleche A, Postic D, Girardet K, Peter O, Baranton G (1997) Characterization of Borrelia lusitaniae sp. nov. by 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol 47:921–925

    Google Scholar 

  • Lebert H (1876) Rückfallthyphus und biliöses Typhoid. In: Vogel FCW (ed) Handbuch der akuten Infectionskrankheiten. Verlag von F. C. W. Vogel, Leipzig

    Google Scholar 

  • Lepennetier G, Hracsko Z, Unger M, Van Griensven M, Grummel V, Krumbholz M, Berthele A, Hemmer B, Kowarik MC (2019) Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuro-inflammatory diseases. J Neuroinflammation 16:219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Audic S, Robert C, Nguyen TT, Blanc G, Cutler SJ, Wincker P, Couloux A, Claverie JM, Raoult D, Drancourt M (2008) The genome of Borrelia recurrentis, the agent of deadly louse-borne relapsing fever, is a degraded subset of tick-borne Borrelia duttonii. PLoS Genet 4:e1000185

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z-M, **ao X, Zhou C-M, Liu J-X, Gu XL, Fang L-Z et al (2021) Human-pathogenic relapsing fever Borrelia found in bats from Central China phylogenetically clustered together with relapsing fever borreliae reported in the New World. PLoS Negl Trop Dis 15(3):e0009113. https://doi.org/10.1371/journal.pntd.0009113

  • Lin T, Gao L, Seyfang A, Oliver JH Jr (2005) ‘Candidatus Borrelia texasensis’, from the American dog tick Dermacentor variabilis. Int J Syst Evol Microbiol 55:685–693

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Gao L, Zhang C, Odeh E, Jacobs MB, Coutte L, Chaconas G, Philipp MT, Norris SJ (2012) Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity. PLoS One 7:e47532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin T, Troy EB, Hu LT, Gao L, Norris SJ (2014) Transposon mutagenesis as an approach to improved understanding of Borrelia pathogenesis and biology. Front Cell Infect Microbiol 4:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindgren E, Jaenson TGT (2006) Lyme borreliosis in Europe: influences of climate and climate change, epidemiology, ecology and adaptation measures. http://www.euro.who.int/__data/assets/pdf_file/0006/96819/E89522.pdf

  • Littman MP, Goldstein RE, Labato MA, Lappin MR, Moore GE (2006) ACVIM small animal consensus statement on Lyme disease in dogs: diagnosis, treatment, and prevention. J Vet Intern Med 20:422–434

    Article  PubMed  Google Scholar 

  • Ljøstad U, Skogvoll E, Eikeland R, Midgard R, Skarpaas T, Berg A, Mygland A (2008) Oral doxycycline versus intravenous ceftriaxone for European Lyme neuroborreliosis: a multicentre, non-inferiority, double-blind, randomised trial. Lancet Neurol 7:690–695

    Article  PubMed  Google Scholar 

  • Loh SM, Gillett A, Ryan U, Irwin P, Oskam C (2017) Molecular characterization of ‘Candidatus Borrelia tachyglossi’ (family Spirochaetaceae) in echidna ticks, Bothriocroton concolor. Int J Syst Evol Microbiol 67:1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez JE, Krishnavahjala A, Garcia MN, Bermudez S (2016) Tick-borne relapsing fever spirochetes in the Americas. Vet Sci 3:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Luft BJ, Dattwyler RJ, Johnson RC, Luger SW, Bosler EM, Rahn DW, Masters EJ, Grunwaldt E, Gadgil SD (1996) Azithromycin compared with amoxicillin in the treatment of erythema migrans. A double-blind, randomized, controlled trial. Ann Intern Med 124:785–791

    Article  CAS  PubMed  Google Scholar 

  • Maraspin V, Lotric-Furlan S, Cimperman J, Ruzić-Sabljić E, Strle F (1999) Erythema migrans in the immunocompromised host. Wien Klin Wochenschr 111:923–932

    CAS  PubMed  Google Scholar 

  • Maraspin V, Cimperman J, Lotric-Furlan S, Logar M, Ruzić-Sabljić E, Strle F (2006) Erythema migrans in solid-organ transplant recipients. Clin Infect Dis 42:1751–1754

    Article  PubMed  Google Scholar 

  • Maraspin V, Ružić-Sabljić E, Pleterski-Rigler D, Strle F (2011) Pregnant women with erythema migrans and isolation of borreliae from blood: course and outcome after treatment with ceftriaxone. Diagn Microbiol Infect Dis 71:446–448

    Article  CAS  PubMed  Google Scholar 

  • Maraspin V, Bogovič P, Rojko T, Ogrinc K, Ružić-Sabljić E, Strle F (2019) Early Lyme borreliosis in patients treated with tumour necrosis factor-alfa inhibitors. J Clin Med 8:1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marconi RT, Liveris D, Schwartz I (1995) Identification of novel insertion elements, restriction fragment length polymorphism patterns, and discontinuous 23S rRNA in Lyme disease spirochetes: phylogenetic analyses of rRNA genes and their intergenic spacers in Borrelia japonica sp. nov. and genomic group 21038 (Borrelia andersonii sp. nov.) isolates. J Clin Microbiol 33(9):2427–2434. https://doi.org/10.1128/jcm.33.9.2427-2434.1995. PMID: 7494041; PMCID: PMC228430

  • Margos G, Gatewood AG, Aanensen DM, Hanincova K, Terekhova D, Vollmer SA, Cornet M, Piesman J, Donaghy M, Bormane A, Hurn MA, Feil EJ, Fish D, Casjens S, Wormser GP, Schwartz I, Kurtenbach K (2008) MLST of housekee** genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc Natl Acad Sci U S A 105:8730–8735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margos G, Vollmer SA, Cornet M, Garnier M, Fingerle V, Wilske B, Bormane A, Vitorino L, Collares-Pereira M, Drancourt M, Kurtenbach K (2009) A new Borrelia species defined by multilocus sequence analysis of housekee** genes. Appl Environ Microbiol 75:5410–5416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margos G, Hojgaard A, Lane RS, Cornet M, Fingerle V, Rudenko N, Ogden N, Aanensen DM, Fish D, Piesman J (2010) Multilocus sequence analysis of Borrelia bissettii strains from North America reveals a new Borrelia species, Borrelia kurtenbachii. Ticks Tick Borne Dis 1(4):151–158. https://doi.org/10.1016/j.ttbdis.2010.09.002. PMID: 21157575; PMCID: PMC3000690

  • Margos G, Wilske B, Sing A, Hizo-Teufel C, Cao WC, Chu C, Scholz H, Straubinger RK, Fingerle V (2013) Borrelia bavariensis sp. nov. is widely distributed in Europe and Asia. Int J Syst Evol Microbiol 63(Pt 11):4284–4288. https://doi.org/10.1099/ijs.0.052001-0. PMID: 23838444

  • Margos G, Castillo-Ramirez S, Hoen AG (2012a) Phylogeography of Lyme borreliosis-group spirochetes and methicillin-resistant Staphylococcus aureus. Parasitology 139:1952–1965

    Article  PubMed  Google Scholar 

  • Margos G, Tsao JI, Castillo-Ramirez S, Girard YA, Hamer SA, Hoen AG, Lane RS, Raper SL, Ogden NH (2012b) Two boundaries separate Borrelia burgdorferi populations in North America. Appl Environ Microbiol 78:6059–6067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margos G, Piesman J, Lane RS, Ogden NH, Sing A, Straubinger RK, Fingerle V (2014) Borrelia kurtenbachii sp. nov., a widely distributed member of the Borrelia burgdorferi sensu lato species complex in North America. Int J Syst Evol Microbiol 64(Pt 1):128–130. https://doi.org/10.1099/ijs.0.054593-0. PMID: 24048870

  • Margos G, Stockmeier S, Hizo-Teufel C, Hepner S, Fish D, Dautel H, Sing A, Dzaferovic E, Rieger M, Jungnick S, Binder K, Straubinger RK, Fingerle V (2015a) Long-term in vitro cultivation of Borrelia miyamotoi. Ticks Tick Borne Dis 6:181–184

    Article  PubMed  Google Scholar 

  • Margos G, Chu CY, Takano A, Jiang BG, Liu W, Kurtenbach K, Masuzawa T, Fingerle V, Cao WC, Kawabata H (2015b) Borrelia yangtzensis sp. nov., a rodent-associated species in Asia, is related to Borrelia valaisiana. Int J Syst Evol Microbiol 65(11):3836–3840. https://doi.org/10.1099/ijsem.0.000491. PMID: 28875924

  • Margos G, Lane RS, Fedorova N, Koloczek J, Piesman J, Hojgaard A, Sing A, Fingerle V (2016) Borrelia bissettiae sp. nov. and Borrelia californiensis sp. nov. Prevail in Diverse Enzootic Transmission Cycles. Int J Syst Evol Microbiol 66:1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margos G, Hepner S, Mang C, Marosevic D, Reynolds SE, Krebs S, Sing A, Derdakova M, Reiter MA, Fingerle V (2017a) Lost in plasmids: next generation sequencing and the complex genome of the tick-borne pathogen Borrelia burgdorferi. BMC Genomics 18:422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margos G, Sing A, Fingerle V (2017b) Published data do not support the notion that Borrelia valaisiana is human pathogenic. Infection 45:567–569

    Article  PubMed  Google Scholar 

  • Margos G, Fedorova N, Kleinjan JE, Hartberger C, Schwan TG, Sing A, Fingerle V (2017c) Borrelia lanei sp. nov. extends the diversity of Borrelia species in California. Int J Syst Evol Microbiol 67(10):3872–3876. https://doi.org/10.1099/ijsem.0.002214. PMID: 28884668; PMCID: PMC5737112

  • Margos G, Gofton A, Wibberg D, Dangel A, Marosevic D, Loh SM, Oskam C, Fingerle V (2018) The genus Borrelia reloaded. PLoS One 13:e0208432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margos G, Becker NS, Fingerle V, Sing A, Ramos JA, Carvalho IL, Norte AC (2019a) Core genome phylogenetic analysis of the avian associated Borrelia turdi indicates a close relationship to Borrelia garinii. Mol Phylogenet Evol 131:93–98

    Article  PubMed  Google Scholar 

  • Margos G, Fingerle V, Reynolds S (2019b) Borrelia bavariensis: Vector switch, niche invasion, and geographical spread of a tick-borne bacterial parasite. Front Ecol Evol 7:401

    Article  Google Scholar 

  • Margos G, Fedorova N, Becker NS, Kleinjan JE, Marosevic D, Krebs S, Hui L, Fingerle V, Lane RS (2020a) Borrelia maritima sp. nov., a novel species of the Borrelia burgdorferi sensu lato complex, occupying a basal position to North American species. Int J Syst Evol Microbiol 70:849–856

    Article  CAS  PubMed  Google Scholar 

  • Margos G, Pantchev N, Globokar M, Lopez J, Rodon J, Hernandez L, Herold H, Salas N, Civit A, Fingerle V (2020b) First cases of natural infections with Borrelia hispanica in two dogs and a cat from Europe. Microorganisms 8:1251

    Article  PubMed  PubMed Central  Google Scholar 

  • Margos G, Fingerle V, Cutler S, Gofton A, Stevenson B, Estrada-Peña A (2020c) Controversies in bacterial taxonomy: The example of the genus Borrelia. Ticks Tick Borne Dis 11(2):101335. https://doi.org/10.1016/j.ttbdis.2019.101335. PMID: 31836459

  • Markowicz M, Reiter M, Gamper J, Stanek G, Stockinger H (2021a) Persistent anti-Borrelia IgM antibodies without Lyme borreliosis in the clinical and immunological context. Microbiol Spectr 9:e0102021

    Article  PubMed  Google Scholar 

  • Markowicz M, Schötta AM, Höss D, Kundi M, Schray C, Stockinger H, Stanek G (2021b) Infections with tickborne pathogens after tick bite, Austria, 2015-2018. Emerg Infect Dis 27:1048–1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Marosevic D, Margos G, Wallich R, Wieser A, Sing A, Fingerle V (2017) First insights in the variability of Borrelia recurrentis genomes. PLoS Negl Trop Dis 11:e0005865

    Article  PubMed  PubMed Central  Google Scholar 

  • Masuzawa T (2004) Terrestrial distribution of the Lyme borreliosis agent Borrelia burgdorferi sensu lato in East Asia. Jpn J Infect Dis 57:229–235

    PubMed  Google Scholar 

  • Masuzawa T, Takada N, Kudeken M, Fukui T, Yano Y, Ishiguro F, Kawamura Y, Imai Y, Ezaki T (2001) Borrelia sinica sp. nov., a lyme disease-related Borrelia species isolated in China. Int J Syst Evol Microbiol 51:1817–1824

    Google Scholar 

  • McCall PJ, Hume JC, Motshegwa K, Pignatelli P, Talbert A, Kisinza W (2007) Does tick-borne relapsing fever have an animal reservoir in East Africa? Vector Borne Zoonotic Dis 7:659–666

    Article  CAS  PubMed  Google Scholar 

  • McCoy BN, Maïga O, Schwan TG (2014) Detection of Borrelia theileri in Rhipicephalus geigyi from Mali. Ticks Tick Borne Dis 5:401–403

    Article  PubMed  PubMed Central  Google Scholar 

  • McNeil E, Hinshaw WR, Kissling RE (1949) A study of Borrelia anserina infection (spirochetosis) in turkeys. J Bacteriol 57:191–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mechai S, Margos G, Feil EJ, Lindsay LR, Ogden NH (2015) Complex population structure of Borrelia burgdorferi in southeastern and south central Canada as revealed by phylogeographic analysis. Appl Environ Microbiol 81:1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Pena A, George JC, Golovljova I, Jaenson TG, Jensen JK, Jensen PM, Kazimirova M, Oteo JA, Papa A, Pfister K, Plantard O, Randolph SE, Rizzoli A, Santos-Silva MM, Sprong H, Vial L, Hendrickx G, Zeller H, Van Bortel W (2013) Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit Vectors 6:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Merkac MI, Tomazic J, Strle F (2015) Lyme neuroborreliosis in a patient treated with TNF-alpha inhibitor. Infection 43:759–762

    Article  PubMed  Google Scholar 

  • Mikkilä HO, Seppälä IJ, Viljanen MK, Peltomaa MP, Karma A (2000) The expanding clinical spectrum of ocular Lyme borreliosis. Ophthalmology 107:581–587

    Article  PubMed  Google Scholar 

  • Mitani H, Talbert A, Fukunaga M (2004) New World relapsing fever Borrelia found in Ornithodoros porcinus ticks in central Tanzania. Microbiol Immunol 48:501–505

    Article  CAS  PubMed  Google Scholar 

  • Molloy PJ, Telford SR 3rd, Chowdri HR, Lepore TJ, Gugliotta JL, Weeks KE, Hewins ME, Goethert HK, Berardi VP (2015) Borrelia miyamotoi disease in the northeastern United States: A case series. Ann Intern Med 163:91–98

    Article  PubMed  Google Scholar 

  • Mongodin EF, Casjens SR, Bruno JF, Xu Y, Drabek EF, Riley DR, Cantarel BL, Pagan PE, Hernandez YA, Vargas LC, Dunn JJ, Schutzer SE, Fraser CM, Qiu WG, Luft BJ (2013) Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation. BMC Genomics 14:693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moody KD, Terwilliger GA, Hansen GM, Barthold SW (1994) Experimental Borrelia burgdorferi infection in Peromyscus leucopus. J Wildl Dis 30:155–161

    Article  CAS  PubMed  Google Scholar 

  • Morgenstern K, Baljer G, Norris DE, Kraiczy P, Hanssen-Hübner C, Hunfeld KP (2009) In vitro susceptibility of Borrelia spielmanii to antimicrobial agents commonly used for treatment of Lyme disease. Antimicrob Agents Chemother 53:1281–1284

    Article  CAS  PubMed  Google Scholar 

  • Mueller I, Freitag MH, Poggensee G, Scharnetzky E, Straube E, Ch Schoerner H, Hlobil HJ, Hagedorn G, Stanek A, Schubert-Unkmeir DE, Norris JG, Hunfeld KP (2012) Evaluating frequency, diagnostic quality, and cost of Lyme borreliosis testing in Germany: a retrospective model analysis. Clin Dev Immunol 2012:595427

    Google Scholar 

  • Mun J, Eisen RJ, Eisen L, Lane RS (2006) Detection of a Borrelia miyamotoi sensu lato relapsing-fever group spirochete from Ixodes pacificus in California. J Med Entomol 43:120–123

    Article  PubMed  Google Scholar 

  • Muñoz-Leal S, Ramirez DG, Luz HR, Faccini JLH, Labruna MB (2020) “Candidatus Borrelia ibitipoquensis,” a Borrelia valaisiana-related genospecies characterized from Ixodes paranaensis in Brazil. Microb Ecol 80:682–689

    Article  PubMed  Google Scholar 

  • Mygland A, Ljostad U, Fingerle V, Rupprecht T, Schmutzhard E, Steiner I (2010) EFNS guidelines on the diagnosis and management of European Lyme neuroborreliosis. Eur J Neurol 17(8-16):e1–e4

    Google Scholar 

  • Naddaf SR, Ghazinezhad B, Bahramali G, Cutler SJ (2012) Phylogenetic analysis of the spirochete Borrelia microti, a potential agent of relapsing fever in Iran. J Clin Microbiol 50(9):2873–2876. https://doi.org/10.1128/JCM.00801-12. PMID: 22718931; PMCID: PMC3421807

  • Nefedova VV, Korenberg EI, Gorelova NB, Kovalevskii YV (2004) Studies on the transovarial transmission of Borrelia burgdorferi sensu lato in the taiga tick Ixodes persulcatus. Folia Parasitology 51:67–71

    Article  Google Scholar 

  • Newman EA, Eisen L, Eisen RJ, Fedorova N, Hasty JM, Vaughn C, Lane RS (2015) Borrelia burgdorferi sensu lato spirochetes in wild birds in northwestern California: associations with ecological factors, bird behavior and tick infestation. PLoS One 10:e0118146

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguala S, Baux E, Patrat-Delon S, Saunier F, Schemoul J, Tattevin P, Cazorla C, Eldin C, Bouiller K, Raffetin A (2021) Methodological quality assessment with the AGREE II scale and a comparison of European and American guidelines for the treatment of Lyme Borreliosis: a systematic review. Pathogens 10:972

    Article  PubMed  PubMed Central  Google Scholar 

  • Nizič T, Velikanje E, Ružić-Sabljić E, Arnež M (2012) Solitary erythema migrans in children: comparison of treatment with clarithromycin and amoxicillin. Wien Klin Wochenschr 124:427–433

    Article  PubMed  Google Scholar 

  • Nocton JJ, Dressler F, Rutledge BJ, Rys PN, Persing DH, Steere AC (1994) Detection of Borrelia burgdorferi DNA by polymerase chain reaction in synovial fluid from patients with Lyme arthritis. N Engl J Med 330:229–234

    Article  CAS  PubMed  Google Scholar 

  • Nordstrand A, Bunikis I, Larsson C, Tsogbe K, Schwan TG, Nilsson M, Bergström S (2007) Tickborne relapsing fever diagnosis obscured by malaria, Togo. Emerg Infect Dis 13:117–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Norris SJ (2006) Antigenic variation with a twist--the Borrelia story. Mol Microbiol 60:1319–1322

    Article  CAS  PubMed  Google Scholar 

  • Norris SJ, Howell JK, Garza SA, Ferdows MS, Barbour AG (1995) High- and low-infectivity phenotypes of clonal populations of in vitro-cultured Borrelia burgdorferi. Infect Immunol 63:2206–2212

    Article  CAS  Google Scholar 

  • Norris DE, Johnson BJ, Piesman J, Maupin GO, Clark JL, W. C. th Black. (1997) Culturing selects for specific genotypes of Borrelia burgdorferi in an enzootic cycle in Colorado. J Clin Microbiol 35:2359–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norte AC, Margos G, Becker NS, Albino Ramos J, Núncio MS, Fingerle V, Araújo PM, Adamík P, Alivizatos H, Barba E, Barrientos R, Cauchard L, Csörgő T, Diakou A, Dingemanse NJ, Doligez B, Dubiec A, Eeva T, Flaisz B, Grim T, Hau M, Heylen D, Hornok S, Kazantzidis S, Kováts D, Krause F, Literak I, Mänd R, Mentesana L, Morinay J, Mutanen M, Neto JM, Nováková M, Sanz JJ, Pascoal da Silva L, Sprong H, Tirri IS, Török J, Trilar T, Tyller Z, Visser ME, Lopes de Carvalho I (2020) Host dispersal shapes the population structure of a tick-borne bacterial pathogen. Mol Ecol 29:485–501

    Article  PubMed  Google Scholar 

  • Norte AC, Boyer PH, Castillo-Ramirez S, Chvostáč M, Brahami MO, Rollins RE, Woudenberg T, Didyk YM, Derdakova M, Núncio MS, Carvalho IL, Margos G, Fingerle V (2021) The population structure of Borrelia lusitaniae is reflected by a population division of its Ixodes vector. Microorganisms 9:933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogden NH, Lindsay LR, Hanincova K, Barker IK, Bigras-Poulin M, Charron DF, Heagy A, Francis CM, O’Callaghan CJ, Schwartz I, Thompson RA (2008) Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Appl Environ Microbiol 74:1780–1790

    Article  CAS  PubMed  Google Scholar 

  • Ogrinc K, Hernández SA, Korva M, Bogovič P, Rojko T, Lusa L, Chiumento G, Strle F, Strle K (2022) Unique clinical, immune, and genetic signature in patients with borrelial meningoradiculoneuritis. Emerg Infect Dis 28:766–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlenbusch A, Matuschka FR, Richter D, Christen HJ, Thomssen R, Spielman A, Eiffert H (1996) Etiology of the acrodermatitis chronica atrophicans lesion in Lyme disease. J Infect Dis 174:421–423

    Article  CAS  PubMed  Google Scholar 

  • Okeyo M, Hepner S, Rollins RE, Hartberger C, Straubinger RK, Marosevic D, Bannister SA, Bormane A, Donaghy M, Sing A, Fingerle V, Margos G (2020) Longitudinal study of prevalence and spatio-temporal distribution of Borrelia burgdorferi sensu lato in ticks from three defined habitats in Latvia, 1999-2010. Environ Microbiol 22:5033–5047

    Article  CAS  PubMed  Google Scholar 

  • Ostfeld RS, Canham CD, Oggenfuss K, Winchcombe RJ, Keesing F (2006) Climate, deer, rodents, and acorns as determinants of variation in lyme-disease risk. PLoS Biol 4:e145

    Article  PubMed  PubMed Central  Google Scholar 

  • Pachner AR, Steere AC (1985) The triad of neurologic manifestations of Lyme disease: meningitis, cranial neuritis, and radiculoneuritis. Neurology 35:47–53

    Article  CAS  PubMed  Google Scholar 

  • Pages F, Dautel H, Duvallet G, Kahl O, de Gentile L, Boulanger N (2014) Tick repellents for human use: prevention of tick bites and tick-borne diseases. Vector Borne Zoonotic Dis 14:85–93

    Article  PubMed  Google Scholar 

  • Pancewicz SA, Garlicki AM, Moniuszko-Malinowska A, Zajkowska J, Kondrusik M, Grygorczuk S, Czupryna P, Dunaj J (2015) Diagnosis and treatment of tick-borne diseases recommendations of the Polish Society of Epidemiology and Infectious Diseases. Przegl Epidemiol 69(309-16):421–428

    Google Scholar 

  • Panetta JL, Šíma R, Calvani NED, Hajdušek O, Chandra S, Panuccio J, Šlapeta J (2017) Reptile-associated Borrelia species in the goanna tick (Bothriocroton undatum) from Sydney, Australia. Parasit Vectors 10:616

    Article  PubMed  PubMed Central  Google Scholar 

  • Pantchev N, Pluta S, Huisinga E, Nather S, Scheufelen M, Vrhovec MG, Schweinitz A, Hampel H, Straubinger RK (2015) Tick-borne diseases (borreliosis, anaplasmosis, babesiosis) in German and Austrian dogs: Status quo and review of distribution, transmission, clinical findings, diagnostics and prophylaxis. Parasitol Res 114(Suppl 1):S19–S54

    Article  PubMed  Google Scholar 

  • Petzke M, Schwartz I (2015) Borrelia burgdorferi pathogenesis and the immune response. Clin Lab Med 35:745–764

    Article  Google Scholar 

  • Pfister HW, Wilske B, Preac-Mursic V (1989) Clinical and serological follow-up of patients with Bannwarth´s syndrome: comparison of patients with and without penicillin treatment. Zbl. Bakt. Lyme Borreliosis II:276–279

    Google Scholar 

  • Picken RN, Picken MM (2000) Molecular characterization of Borrelia spp. isolates from greater metropolitan Chicago reveals the presence of Borrelia bissettii. Preliminary report. J Mol Microbiol Biotechnol 2:505–507

    CAS  PubMed  Google Scholar 

  • Piesman J (2002) Ecology of Borrelia burgdorferi sensu lato in Northamerica. In: Gray JS, Kahl O, Lane RS, Stanek G (eds) Lyme borreliosis: biology of the infectious agents and epidemiology of disease. CABI Publishing, Wallingford

    Google Scholar 

  • Piesman J, Gern L (2004) Lyme borreliosis in Europe and North America. Parasitology 129(Suppl):S191–S220

    Article  PubMed  Google Scholar 

  • Piesman J, Schwan TG (2010) Ecology of borreliae and their arthropod vectors. In: Samuels DS, Radolf JD (eds) Borrelia: Molecular biology, host interaction and pathogenesis. Caister Academic Press, Poole

    Google Scholar 

  • Pietikäinen A, Maksimow M, Kauko T, Hurme S, Salmi M, Hytönen J (2016) Cerebrospinal fluid cytokines in Lyme neuroborreliosis. J Neuroinflammation 13:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Platonov AE, Karan LS, Kolyasnikova NM, Makhneva NA, Toporkova MG, Maleev VV, Fish D, Krause PJ (2011) Humans infected with relapsing fever spirochete Borrelia miyamotoi, Russia. Emerg Infect Dis 17:1816–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postic D, Ras NM, Lane RS, Hendson M, Baranton G (1998) Expanded diversity among Californian borrelia isolates and description of Borrelia bissettii sp. nov. (formerly Borrelia group DN127). J Clin Microbiol 36:3497–3504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postic D, Garnier M, Baranton G (2007) Multilocus sequence analysis of atypical Borrelia burgdorferi sensu lato isolates–description of Borrelia californiensis sp. nov., and genomospecies 1 and 2. Int J Med Microbiol 297(4):263–271. https://doi.org/10.1016/j.ijmm.2007.01.006. PMID: 17374507

  • Preac Mursic V, Marget W, Busch U, Pleterski Rigler D, Hagl S (1996) Kill kinetics of Borrelia burgdorferi and bacterial findings in relation to the treatment of Lyme borreliosis. Infection 24:9–16

    Article  CAS  PubMed  Google Scholar 

  • Preac-Mursic V, Wilske B, Schierz G (1986) European Borrelia burgdorferi isolated from humans and ticks culture conditions and antibiotic susceptibility. Zentralbl Bakteriol Mikrobiol Hyg A 263:112–118

    CAS  PubMed  Google Scholar 

  • Pritt BS, Mead PS, Johnson DK, Neitzel DF, Respicio-Kingry LB, Davis JP, Schiffman E, Sloan LM, Schriefer ME, Replogle AJ, Paskewitz SM, Ray JA, Bjork J, Steward CR, Deedon A, Lee X, Kingry LC, Miller TK, Feist MA, Theel ES, Patel R, Irish CL, Petersen JM (2016) Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: a descriptive study. Lancet Infect Dis 16:511–512

    Article  Google Scholar 

  • Qiu Y, Nakao R, Hang’ombe BM, Sato K, Kajihara M, Kanchela S, Changula K, Eto Y, Ndebe J, Sasaki M, Thu MJ, Takada A, Sawa H, Sugimoto C, Kawabata H (2019) Human borreliosis caused by a new world relapsing fever Borrelia-like organism in the old world. Clin Infect Dis 69:107–112

    Article  PubMed  Google Scholar 

  • Qiu Y, Squarre D, Nakamura Y, Lau ACC, Moonga LC, Kawai N, Ohnuma A, Hayashida K, Nakao R, Yamagishi J, Sawa H, Namangala B, Kawabata H (2021) Evidence of Borrelia theileri in wild and Ddmestic animals in the Kafue ecosystem of Zambia. Microorganisms 9:2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radolf JD, Samuels DS (2021) Lyme disease and relapsing fever spirochetes. Caister Academic Press, Poole

    Google Scholar 

  • Radolf JD, Bourell KW, Akins DR, Brusca JS, Norgard MV (1994) Analysis of Borrelia burgdorferi membrane architecture by freeze-fracture electron microscopy. J Bacteriol 176:21–31

    Article  CAS  PubMed  Google Scholar 

  • Radolf JD, Strle K, Lemieux JE, Strle F (2021) Lyme disease in humans. Curr Issues Mol Biol 42:333–384

    PubMed  Google Scholar 

  • Randolph SE, Green RM, Hoodless AN, Peacey MF (2002) An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. Int J Parasitol 32:979–989

    Article  PubMed  Google Scholar 

  • Rauer S, Kastenbauer S, Hofmann H, Fingerle V, Huppertz HI, Hunfeld KP, Krause A, Ruf B, Dersch R (2020) Guidelines for diagnosis and treatment in neurology - Lyme neuroborreliosis. Ger Med Sci 18:Doc03

    PubMed  Google Scholar 

  • Rauter C, Hartung T (2005) Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: A metaanalysis. Appl Environ Microbiol 71:7203–7216

    Article  CAS  PubMed  Google Scholar 

  • Rebaudet S, Parola P (2006) Epidemiology of relapsing fever borreliosis in Europe. FEMS Immunol Med Microbiol 48:11–15

    Article  CAS  PubMed  Google Scholar 

  • Replogle AJ, Sexton C, Young J, Kingry LC, Schriefer ME, Dolan M, Johnson TL, Connally NP, Padgett KA, Petersen JM (2021) Isolation of Borrelia miyamotoi and other Borreliae using a modified BSK medium. Sci Rep 11:1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter D, Schlee DB, Matuschka FR (2003) Relapsing fever-like spirochetes infecting European vector tick of Lyme disease agent. Emerg Infect Dis 9:697–701

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter D, Schlee DB, Allgäwer R, Matuschka FR (2004) Relationships of a novel Lyme disease spirochete, Borrelia spielmani sp. nov., with its hosts in Central Europe. Appl Environ Microbiol 70(11):6414–6419. https://doi.org/10.1128/AEM.70.11.6414-6419.2004. PMID: 15528500; PMCID: PMC525186

  • Richter D, Postic D, Sertour N, Livey I, Matuschka FR, Baranton G (2006) Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelia spielmanii sp. nov. Int J Syst Evol Microbiol 56(Pt 4):873–881. https://doi.org/10.1099/ijs.0.64050-0. PMID: 16585709

  • Rollend L, Fish D, Childs JE (2013) Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: a summary of the literature and recent observations. Ticks Tick Borne Dis 4:46–51

    Article  PubMed  Google Scholar 

  • Rosa PA, Jewett MW (2021) Genetic manipulation of Borrelia. Curr Issues Mol Biol 42:307–332

    PubMed  Google Scholar 

  • Rosa PA, Tilly K, Stewart PE (2005) The burgeoning molecular genetics of the Lyme disease spirochaete. Nat Rev Microbiol 3:129–143

    Article  CAS  PubMed  Google Scholar 

  • Rudenko N, Golovchenko M, Lin T, Gao L, Grubhoffer L, Oliver JH Jr (2009) Delineation of a new species of the Borrelia burgdorferi Sensu Lato Complex, Borrelia americana sp. nov. J Clin Microbiol 47(12):3875–80. https://doi.org/10.1128/JCM.01050-09. PMID: 19846628; PMCID: PMC2786643

  • Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH (2011) Borrelia carolinensis sp. nov., a novel species of the Borrelia burgdorferi sensu lato complex isolated from rodents and a tick from the south-eastern USA. Int J Syst Evol Microbiol 61(Pt 2):381–383. https://doi.org/10.1099/ijs.0.021436-0. PMID: 20305062; PMCID: PMC3081087

  • Rupprecht TA, Lechner C, Tumani H, Fingerle V (2014) CXCL13: a biomarker for acute Lyme neuroborreliosis: investigation of the predictive value in the clinical routine. Nervenarzt 85:459–464

    Article  CAS  PubMed  Google Scholar 

  • Ruzic-Sabljic E, Lotric-Furlan S, Maraspin V, Cimperman J, Logar M, Jurca T, Strle F (2006) Comparison of isolation rate of Borrelia burgdorferi sensu lato in MKP and BSK-II medium. Int J Med Microbiol 296(Suppl 40):267–273

    Article  CAS  Google Scholar 

  • Ruzic-Sabljic E, Maraspin V, Cimperman J, Strle F, Lotric-Furlan S, Stupica D, Cerar T (2014) Comparison of isolation rate of Borrelia burgdorferi sensu lato in two different culture media, MKP and BSK-H. Clin Microbiol Infect 20:636–641

    Article  CAS  PubMed  Google Scholar 

  • Schalka S, Steiner D, Ravelli FN, Steiner T, Terena AC, Marçon CR, Ayres EL, Addor FA, Miot HA, Ponzio H, Duarte I, Neffá J, Cunha JA, Boza JC, Samorano Lde P, Corrêa Mde P, Maia M, Nasser N, Leite OM, Lopes OS, Oliveira PD, Meyer RL, Cestari T, Reis VM, Rego VR (2014) Brazilian consensus on photoprotection. An Bras Dermatol 89:1–74

    Article  PubMed Central  Google Scholar 

  • Schenone H (1999) Xenodiagnosis. Mem Inst Oswaldo Cruz 94(Suppl 1):289–294

    Article  PubMed  Google Scholar 

  • Schwan TG (2021) Vector specificity of the relapsing fever spirochete Borrelia hermsii (Spirochaetales: Borreliaceae) for the tick Ornithodoros hermsi (Acari: Argasidae) involves persistent infection of the salivary glands. J Med Entomol 58:1926–1930

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwan TG, Raffel SJ (2021) Transovarial transmission of Borrelia hermsii by its tick vector and reservoir host Ornithodoros hermsi. Microorganisms 9:1978

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwan TG, Burgdorfer W, Garon CF (1988) Changes in infectivity and plasmid profile of the Lyme disease spirochete, Borrelia burgdorferi, as a result of in vitro cultivation. Infect Immunol 56:1831–1836

    Article  CAS  Google Scholar 

  • Schwan TG, Schrumpf ME, Hinnebusch BJ, Anderson DE Jr, Konkel ME (1996) GlpQ: an antigen for serological discrimination between relapsing fever and Lyme borreliosis. J Clin Microbiol 34:2483–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwan TG, Raffel SJ, Schrumpf ME, Porcella SF (2007) Diversity and distribution of Borrelia hermsii. Emerg Infect Dis 13:436–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwan TG, Raffel SJ, Schrumpf ME, Gill JS, Piesman J (2009) Characterization of a novel relapsing fever spirochete in the midgut, coxal fluid, and salivary glands of the bat tick Carios kelleyi. Vector Borne Zoonotic Dis 9(6):643–647. https://doi.org/10.1089/vbz.2008.0177. PMID: 19281412; PMCID: PMC2795039

  • Schwartz AM, Hinckley AF, Mead PS, Hook SA, Kugeler KJ (2017) Surveillance for Lyme Disease - United States, 2008-2015. MMWR Surveill Summ 66:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz I, Margos G, Casjens SR, Qiu WG, Eggers CH (2021) Multipartite genome of Lyme disease Borrelia: Structure, variation and prophages. Curr Issues Mol Biol 42:409–454

    PubMed  Google Scholar 

  • Scoles GA, Papero M, Beati L, Fish D (2001) A relapsing fever group spirochete transmitted by Ixodes scapularis ticks. Vector Borne Zoonotic Dis 1:21–34

    Article  CAS  PubMed  Google Scholar 

  • Scott MC, Rosen ME, Hamer SA, Baker E, Edwards H, Crowder C, Tsao JI, Hickling GJ (2010) High-prevalence Borrelia miyamotoi infection among wild turkeys (Meleagris gallopavo) in Tennessee. J Med Entomol 47:1238–1242

    Article  CAS  PubMed  Google Scholar 

  • Semenza JC, Menne B (2009) Climate change and infectious diseases in Europe. Lancet Infect Dis 9:365–375

    Article  PubMed  Google Scholar 

  • Shang ES, Skare JT, Exner MM, Blanco DR, Kagan BL, Miller JN, Lovett MA (1998) Isolation and characterization of the outer membrane of Borrelia hermsii. Infect Immunol 66:1082–1091

    Article  CAS  Google Scholar 

  • Shaw SE, Birtles RJ, Day MJ (2001) Arthropod-transmitted infectious diseases of cats. J Feline Med Surg 3:193–209

    Article  CAS  PubMed  Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420

    Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved list of bacterial names. ASM Press, Washington, DC

    Book  Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1989) Approved list of bacterial names (Amended). ASM Press, Washington, DC

    Google Scholar 

  • Sonenshine DE, Roe M (2014) Overview: ticks, people and animals. In: Sonenshine DE, Roe M (eds) Biology of ticks. Oxford University Press, Oxford

    Google Scholar 

  • Spielman A (1994) The emergence of Lyme disease and human babesiosis in a changing environment. Ann N Y Acad Sci 740:146–156

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kampfer P, Maiden MC, Nesme X, Rossello-Mora R, Swings J, Truper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    CAS  PubMed  Google Scholar 

  • Stanek G, Strle F (2003) Lyme borreliosis. Lancet 362:1639–1647

    Article  PubMed  Google Scholar 

  • Stanek G, Strle F (2018) Lyme borreliosis-from tick bite to diagnosis and treatment. FEMS Microbiol Rev 42:233–258

    Article  CAS  PubMed  Google Scholar 

  • Stanek G, Strle G, Gray J, Wormser GP (2002) History and characteristics of Lyme borreliosis (Gray J, Kahl O, Lane RS, Stanek G).

    Google Scholar 

  • Stanek G, Fingerle V, Hunfeld KP, Jaulhac B, Kaiser R, Krause A, Kristoferitsch W, O’Connell S, Ornstein K, Strle F, Gray J (2011) Lyme borreliosis: clinical case definitions for diagnosis and management in Europe. Clin Microbiol Infect 17:69–79

    Article  CAS  PubMed  Google Scholar 

  • Stanek G, Wormser GP, Gray J, Strle F (2012) Lyme borreliosis. Lancet 379:461–473

    Article  Google Scholar 

  • Steere AC (1989) Lyme disease. N Engl J Med 321:586–596

    Article  CAS  Google Scholar 

  • Steere AC (2001) Lyme disease. N Engl J Med 345:115–125

    Article  CAS  PubMed  Google Scholar 

  • Steere AC, Sikand VK (2003) The presenting manifestations of Lyme disease and the outcomes of treatment. N Engl J Med 348:2472–2474

    Article  PubMed  Google Scholar 

  • Steere AC, Malawista SE, Snydman DR, Andiman WA (1976) Cluster of arthritis in children and adults in Lyme, Connecticut. Arthritis Rheum 19:824–824

    Google Scholar 

  • Steere AC, Broderick TF, Malawista SE (1978) Erythema chronicum migrans and Lyme arthritis: epidemiologic evidence for a tick vector. Am J Epidemiol 108:312–321

    Article  CAS  PubMed  Google Scholar 

  • Steere AC, Batsford WP, Weinberg M, Alexander J, Berger HJ, Wolfson S, Malawista SE (1980) Lyme carditis: cardiac abnormalities of Lyme disease. Ann Intern Med 93:8–16

    Article  CAS  PubMed  Google Scholar 

  • Steere AC, Schoen RT, Taylor E (1987) The clinical evolution of Lyme arthritis. Ann Intern Med 107:725–731

    Article  CAS  PubMed  Google Scholar 

  • Steere AC, Sikand VK, Schoen RT, Nowakowski J (2003) Asymptomatic infection with Borrelia burgdorferi. Clin Infect Dis 37:528–532

    Article  PubMed  Google Scholar 

  • Steere AC, Coburn J, Glickstein L (2004) The emergence of Lyme disease. J Clin Invest 113:1093–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steere AC, Strle F, Wormser GP, Hu LT, Branda JA, Hovius JW, Li X, Mead PS (2016) Lyme borreliosis. Nat Rev Dis Primers 2:16090

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinhaus EA (1946) Insect Microbiology. Comstock Publishing Co., Ithaca, New York

    Google Scholar 

  • Stete K, Rieg S, Margos G, Häcker G, Wagner D, Kern WV, Fingerle V (2018) Case report and genetic sequence analysis of Candidatus Borrelia kalaharica, Southern Africa. Emerg Infect Dis 24:1659–1664

    Article  PubMed  PubMed Central  Google Scholar 

  • Strle F, Stanek G (2009) Clinical manifestations and diagnosis of Lyme borreliosis. Curr Prob Dermatol 37:51–110

    Article  Google Scholar 

  • Strle F, Nelson JA, Ruzic-Sabljic E, Cimperman J, Maraspin V, Lotric-Furlan S, Cheng Y, Picken MM, Trenholme GM, Picken RN (1996) European Lyme borreliosis: 231 culture-confirmed cases involving patients with erythema migrans. Clin Infect Dis 23:61–65

    Article  CAS  PubMed  Google Scholar 

  • Strle F, Videcnik J, Zorman P, Cimperman J, Lotric-Furlan S, Maraspin V (2002) Clinical and epidemiological findings for patients with erythema migrans. Comparison of cohorts from the years 1993 and 2000. Wien Klin Wochenschr 114:493–497

    PubMed  Google Scholar 

  • Strnad M, Hönig V, Růžek D, Grubhoffer L, Rego ROM (2017) Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl Environ Microbiol 83:e00609

    Article  PubMed Central  Google Scholar 

  • Stupica D, Lusa L, Ruzić-Sabljić E, Cerar T, Strle F (2012) Treatment of erythema migrans with doxycycline for 10 days versus 15 days. Clin Infect Dis 55:343–350

    Article  CAS  PubMed  Google Scholar 

  • Stupica D, Bajrović FF, Blagus R, Cerar Kišek T, Collinet-Adler S, Lah A, Levstek E, Ružić-Sabljić E (2021) Clinical manifestations and long-term outcome of early Lyme neuroborreliosis according to the European Federation of Neurological Societies diagnostic criteria (definite versus possible) in central Europe. A retrospective cohort study. Eur J Neurol 28:3155–3166

    Article  PubMed  Google Scholar 

  • Sultan SZ, Manne A, Stewart PE, Bestor A, Rosa PA, Charon NW, Motaleb MA (2013) Motility is crucial for the infectious life cycle of Borrelia burgdorferi. Infect Immunol 81:2012–2021

    Article  CAS  Google Scholar 

  • Supriyono, Takano A, Kuwata R, Shimoda H, Hadi UK, Setiyono A, Agungpriyono S, Maeda K (2019) Detection and isolation of tick-borne bacteria (Anaplasma spp., Rickettsia spp., and Borrelia spp.) in Amblyomma varanense ticks on lizard (Varanus salvator). Microbiol Immunol 63:328–333. https://doi.org/10.1111/1348-0421.12721. PMID: 31209913

  • Swanson SJ, Neitzel D, Reed KD, Belongia EA (2006) Coinfections acquired from ixodes ticks. Clin Microbiol Rev 19:708–727

    Article  PubMed  PubMed Central  Google Scholar 

  • Sykes RA, Makiello P (2017) An estimate of Lyme borreliosis incidence in Western Europe. J Public Health (Oxf) 39:74–81

    PubMed  Google Scholar 

  • Takano A, Goka K, Une Y, Shimada Y, Fujita H, Shiino T, Watanabe H, Kawabata H (2010) Isolation and characterization of a novel Borrelia group of tick-borne borreliae from imported reptiles and their associated ticks. Environ Microbiol 12:134–146

    Article  CAS  Google Scholar 

  • Takano A, Fujita H, Kadosaka T, Konnai S, Tajima T, Watanabe H, Ohnishi M, Kawabata H (2011) Characterization of reptile-associated Borrelia sp. in the vector tick, Amblyomma geoemydae, and its association with Lyme disease and relapsing fever Borrelia spp. Environ Microbiol Rep 3:632–637

    Article  PubMed  Google Scholar 

  • Takayama K, Rothenberg RJ, Barbour AG (1987) Absence of lipopolysaccharide in the Lyme disease spirochete, Borrelia burgdorfer. Infect Immunol 55:2311–2313

    Article  CAS  Google Scholar 

  • Talagrand-Reboul E, Boyer PH, Bergström S, Vial L, Boulanger N (2018) Relapsing fevers: Neglected tick-borne diseases. Front Cell Infect Microbiol 8:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Teglas MB, Mapes S, Hodzic E, Nieto NC (2011) Co-infection of Ornithodoros coriaceus with the relapsing fever spirochete, Borrelia coriaceae, and the agent of epizootic bovine abortion. Med Vet Entomol 25:337–343

    Article  CAS  PubMed  Google Scholar 

  • Telford SR 3rd, Goethert HK, Molloy PJ, Berardi VP, Chowdri HR, Gugliotta JL, Lepore TJ (2015) Borrelia miyamotoi disease: Neither Lyme disease nor relapsing fever. Clin Lab Med 35:867–882

    Article  PubMed  PubMed Central  Google Scholar 

  • Topakian R, Stieglbauer K, Nussbaumer K, Aichner FT (2008) Cerebral vasculitis and stroke in Lyme neuroborreliosis. Two case reports and review of current knowledge. Cerebrovasc Dis 26:455–461

    Article  PubMed  Google Scholar 

  • Trape JF, Diatta G, Arnathau C, Bitam I, Sarih M, Belghyti D, Bouattour A, Elguero E, Vial L, Mané Y, Baldé C, Prugnolle F, Chauvancy G, Mahé G, Granjon L, Duplantier JM, Durand P, Renaud F (2013) The epidemiology and geographic distribution of relapsing fever borreliosis in West and North Africa, with a review of the Ornithodoros erraticus complex (Acari: Ixodida). PLoS One 8:e78473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevisan G, Cinco M, Trevisini S, di Meo N, Ruscio M, Forgione P, Bonin S (2021) Borreliae Part 2: Borrelia relapsing fever group and unclassified Borrelia. Biology (Basel) 10:1117

    CAS  PubMed  Google Scholar 

  • Tsao JI (2009) Reviewing molecular adaptations of Lyme borreliosis spirochetes in the context of reproductive fitness in natural transmission cycles. Vet Res 40:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Tumani H, Nölker G, Reiber H (1995) Relevance of cerebrospinal fluid variables for early diagnosis of neuroborreliosis. Neurology 45:1663–1670

    Article  CAS  PubMed  Google Scholar 

  • Tuuminen T, Hedman K, Söderlund-Venermo M, Seppälä I (2011) Acute parvovirus B19 infection causes nonspecificity frequently in Borrelia and less often in Salmonella and Campylobacter serology, posing a problem in diagnosis of infectious arthropathy. Clin Vaccine Immunol 18:167–172

    Article  CAS  PubMed  Google Scholar 

  • Tyler S, Tyson S, Dibernardo A, Drebot M, Feil EJ, Graham M, Knox NC, Lindsay LR, Margos G, Mechai S, Van Domselaar G, Thorpe HA, Ogden NH (2018) Whole genome sequencing and phylogenetic analysis of strains of the agent of Lyme disease Borrelia burgdorferi from Canadian emergence zones. Sci Rep 8:10552

    Article  PubMed  PubMed Central  Google Scholar 

  • van Dam AP (2011) Molecular diagnosis of Borrelia bacteria for the diagnosis of Lyme disease. Expert Opin Med Diagn 5:135–149

    Article  PubMed  Google Scholar 

  • van Dam AP, Kuiper H, Vos K, Widjojokusumo A, de Jongh BM, Spanjaard L, Ramselaar AC, Kramer MD, Dankert J (1993) Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis 17:708–717

    Article  PubMed  Google Scholar 

  • van Duijvendijk G, Coipan C, Wagemakers A, Fonville M, Ersöz J, Oei A, Földvári G, Hovius J, Takken W, Sprong H (2016) Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasit Vectors 9:97

    Article  PubMed  PubMed Central  Google Scholar 

  • van Gorkom T, Sankatsing SUC, Voet W, Ismail DM, Muilwijk RH, Salomons M, Vlaminckx BJM, Bossink AWJ, Notermans DW, Bouwman JJM, Kremer K, Thijsen SFT (2018) An enzyme-linked immunosorbent spot assay measuring Borrelia burgdorferi B31-specific interferon Gammag-secreting T cells cannot discriminate active Lyme neuroborreliosis from past Lyme borreliosis: a prospective study in the Netherlands. J Clin Microbiol 56:e01695

    PubMed  PubMed Central  Google Scholar 

  • Vanthomme K, Bossuyt N, Boffin N, Van Casteren V (2012) Incidence and management of presumption of Lyme borreliosis in Belgium: recent data from the sentinel network of general practitioners. Eur J Clin Microbiol Infect Dis 31:2385–2390

    Article  CAS  PubMed  Google Scholar 

  • Vaughn MF, Funkhouser SW, Lin FC, Fine J, Juliano JJ, Apperson CS, Meshnick SR (2014) Long-lasting permethrin impregnated uniforms: a randomized-controlled trial for tick bite prevention. Am J Prev Med 46:473–480

    Article  PubMed  Google Scholar 

  • Veinovic G, Cerar T, Strle F, Lotric-Furlan S, Maraspin V, Cimperman J, Ruzic-Sabljic E (2013) In vitro susceptibility of European human Borrelia burgdorferi sensu stricto strains to antimicrobial agents. Int J Antimicrob Agents 41:288–291

    Article  CAS  PubMed  Google Scholar 

  • Veinović G, Ćakić S, Mihaljica D, Sukara R, Ružić-Sabljić E, Tomanović S (2021) In vitro efficacy of antibiotics against different Borrelia isolates, vol 68. Acta Microbiol Immunol Hung, pp 195–202

    Google Scholar 

  • Vial L (2009) Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distribution. Parasite 16:191–202

    Article  CAS  PubMed  Google Scholar 

  • Vollmer SA, Bormane A, Dinnis RE, Seelig F, Dobson AD, Aanensen DM, James MC, Donaghy M, Randolph SE, Feil EJ, Kurtenbach K, Margos G (2011) Host migration impacts on the phylogeography of Lyme Borreliosis spirochaete species in Europe. Environ Microbiol 13:184–192

    Article  CAS  PubMed  Google Scholar 

  • Wang G, van Dam AP, Le Fleche A, Postic D, Peter O, Baranton G, de Boer R, Spanjaard L, Dankert J (1997) Genetic and phenotypic analysis of Borrelia valaisiana sp. nov. (Borrelia genomic groups VS116 and M19). Int J Syst Bacteriol 47(4):926–932. https://doi.org/10.1099/00207713-47-4-926. PMID: 9336888

  • Wang H, Paesen GC, Nuttall PA, Barbour AG (1998) Male ticks help their mates to feed. Nature 391:753–754

    Article  CAS  PubMed  Google Scholar 

  • Warrell DA (2019) Louse-borne relapsing fever (Borrelia recurrentis infection). Epidemiol Infect 147:e106

    Article  PubMed  PubMed Central  Google Scholar 

  • Weck BC, Serpa MCA, Labruna MB, Muñoz-Leal S (2022) A novel genospecies of Borrelia burgdorferi sensu lato associated with cricetid rodents in Brazil. Microorganisms 10:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelmsson P, Fryland L, Lindblom P, Sjöwall J, Ahlm C, Berglund J, Haglund M, Henningsson AJ, Nolskog P, Nordberg M, Nyberg C, Ornstein K, Nyman D, Ekerfelt C, Forsberg P, Lindgren PE (2016) A prospective study on the incidence of Borrelia burgdorferi sensu lato infection after a tick bite in Sweden and on the Åland Islands, Finland (2008-2009). Ticks Tick Borne Dis 7:71–79

    Article  PubMed  Google Scholar 

  • Wilking H, Stark K (2014) Trends in surveillance data of human Lyme borreliosis from six federal states in eastern Germany, 2009-2012. Ticks Tick Borne Dis 5:219–224

    Article  PubMed  Google Scholar 

  • Wilking H, Fingerle V, Klier C, Thamm M, Stark K (2015) Antibodies against Borrelia burgdorferi sensu lato among adults, Germany, 2008-2011. Emerg Infect Dis 21:107–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolcott KA, Margos G, Fingerle V, Becker NS (2021) Host association of Borrelia burgdorferi sensu lato: a review. Ticks Tick Borne Dis 12:101766

    Article  PubMed  Google Scholar 

  • Wormser GP (2006) Hematogenous dissemination in early Lyme disease. Wien Klin Wochenschr 118:634–637

    Article  PubMed  Google Scholar 

  • Wormser GP, Ramanathan R, Nowakowski J, McKenna D, Holmgren D, Visintainer P, Dornbush R, Singh B, Nadelman RB (2003) Duration of antibiotic therapy for early Lyme disease. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 138:697–704

    Article  CAS  PubMed  Google Scholar 

  • Woudenberg T, Böhm S, Böhmer M, Katz K, Willrich N, Stark K, Kuhnert R, Fingerle V, Wilking H (2020) Dynamics of Borrelia burgdorferi-specific antibodies: seroconversion and seroreversion between two population-based, cross-sectional surveys among adults in Germany. Microorganisms 8:1859

    Article  CAS  Google Scholar 

  • Wright SD, Nielsen SW (1990) Experimental infection of the white-footed mouse with Borrelia burgdorferi. Am J Vet Res 51:1980–1987

    CAS  PubMed  Google Scholar 

  • Younsi H, Sarih M, Jouda F, Godfroid E, Gern L, Bouattour A, Baranton G, Postic D (2005) Characterization of Borrelia lusitaniae isolates collected in Tunisia and Morocco. J Clin Microbiol 43:1587–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhioua E, Bouattour A, Hu CM, Gharbi M, Aeschliman A, Ginsberg HS, Gern L (1999) Infection of Ixodes ricinus (Acari: Ixodidae) by Borrelia burgdorferi sensu lato in North Africa. J Med Entomol 36:216–218

    Article  CAS  PubMed  Google Scholar 

  • Zumpt F, Organ D (1961) Strains of spirochaetes isolated from Ornithodoros zumpti Heisch & Guggisberg, and from wild rats in the Cape Province. A preliminary note. S Afr J Lab Clin Med 7:31–35. PMID: 13788963

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Fingerle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Margos, G., Henningsson, A.J., Hepner, S., Markowicz, M., Sing, A., Fingerle, V. (2023). Borrelia Ecology, Evolution, and Human Disease: A Mosaic of Life. In: Sing, A. (eds) Zoonoses: Infections Affecting Humans and Animals. Springer, Cham. https://doi.org/10.1007/978-3-031-27164-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27164-9_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27163-2

  • Online ISBN: 978-3-031-27164-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation