HREM for Mesoscopic 3D Histology

  • Living reference work entry
  • First Online:
Bioimaging in Tissue Engineering and Regeneration

Abstract

The key for researching the mechanisms underlying pre- and postnatal development and growth, as well as pathologies, tissue regeneration, and therapeutic success, is multidimensional imaging of the formation, regeneration, and remodeling of organs and tissues. While numerous cutting-edge techniques permit three-dimensional (3D) and four-dimensional (4D) visualization of the organ morphology, topology, and function on the one hand, and of cellular and subcellular structures and processes on the other hand, only a few methods exist that permit 3D visualization of tissue morphology and architecture at a mesoscopic level. This chapter introduces high-resolution episcopic microscopy (HREM) as a method for visualizing the architecture of complex anatomic structures and tissues at a voxel resolution of 1 μm3 and bigger and volumes of 4 cm3 and smaller. HREM is a technique that creates digital volume data from histologically processed and physically sectioned organic specimens, including embryos and biopsy material from biomedical models and humans. Two examples of its usefulness to study organ and tissue remodeling as case studies are given. The first studies vascular remodeling in embryogenesis, visualizing blood vessels in embryos of several developmental stages; the second studies the tissue composition and architecture of skin substitutes and skin biopsies, harvested from normal and regenerating skin. Both case studies do not present new data, but sum up already published works, which demonstrate the capacity of HREM to assist biomedical research and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Appel AA, Anastasio MA, Larson JC, Brey EM (2013) Imaging challenges in biomaterials and tissue engineering. Biomaterials 34(28):6615–6630. https://doi.org/10.1016/j.biomaterials.2013.05.033

    Article  Google Scholar 

  • Banerjee A, Biswas R, Lim R, Pasolli HA, Raghavan S (2021) Scanning electron microscopy of murine skin ultrathin sections and cultured keratinocytes. STAR Protoc 2(3):100729. https://doi.org/10.1016/j.xpro.2021.100729

    Article  Google Scholar 

  • Berry DB, Englund EK, Chen S, Frank LR, Ward SR (2021) Medical imaging of tissue engineering and regenerative medicine constructs. Biomater Sci 9(2):301–314. https://doi.org/10.1039/d0bm00705f

    Article  Google Scholar 

  • Bruneel B, Matha M, Paesen R, Ameloot M, Weninger WJ, Huysseune A (2015) Imaging the zebrafish dentition: from traditional approaches to emerging technologies. Zebrafish 12(1):1–10. https://doi.org/10.1089/zeb.2014.0980

    Article  Google Scholar 

  • Collins JE, White RJ, Staudt N, Sealy IM, Packham I, Wali N, Tudor C, Mazzeo C, Green A, Siragher E, Ryder E, White JK, Papatheodoru I, Tang A, Fullgrabe A, Billis K, Geyer SH, Weninger WJ, Galli A, Hemberger M, Stemple DL, Robertson E, Smith JC, Mohun T, Adams DJ, Busch-Nentwich EM (2019) Common and distinct transcriptional signatures of mammalian embryonic lethality. Nat Commun 10(1):2792. https://doi.org/10.1038/s41467-019-10642-x

    Article  Google Scholar 

  • De Franco E, Watson RA, Weninger WJ, Wong CC, Flanagan SE, Caswell R, Green A, Tudor C, Lelliott CJ, Geyer SH, Maurer-Gesek B, Reissig LF, Lango Allen H, Caliebe A, Siebert R, Holterhus PM, Deeb A, Prin F, Hilbrands R, Heimberg H, Ellard S, Hattersley AT, Barroso I (2019) A specific CNOT1 mutation results in a novel syndrome of pancreatic agenesis and holoprosencephaly through impaired pancreatic and neurological development. Am J Hum Genet 104(5):985–989. https://doi.org/10.1016/j.ajhg.2019.03.018

    Article  Google Scholar 

  • Geyer SH, Weninger WJ (2012) Some mice feature 5th pharyngeal arch arteries and double-lumen aortic arch malformations. Cells Tissues Organs 196(1):90–98. https://doi.org/10.1159/000330789

    Article  Google Scholar 

  • Geyer SH, Weninger WJ (2013) Metric characterization of the aortic arch of early mouse fetuses and of a fetus featuring a double lumen aortic arch malformation. Ann Anat 195(2):175–182. https://doi.org/10.1016/j.aanat.2012.09.001

    Article  Google Scholar 

  • Geyer SH, Weninger WJ (2019) High-resolution episcopic microscopy (HREM): looking back on 13 years of successful generation of digital volume data of organic material for 3D visualisation and 3D display. Appl Sci 9(18):3826

    Article  Google Scholar 

  • Geyer SH, Nohammer MM, Tinhofer IE, Weninger WJ (2013) The dermal arteries of the human thumb pad. J Anat 223(6):603–609. https://doi.org/10.1111/joa.12113

    Article  Google Scholar 

  • Geyer SH, Nohammer MM, Matha M, Reissig L, Tinhofer IE, Weninger WJ (2014) High-resolution episcopic microscopy (HREM): a tool for visualizing skin biopsies. Microsc Microanal 20(5):1356–1364. https://doi.org/10.1017/S1431927614013063

    Article  Google Scholar 

  • Geyer SH, Tinhofer IE, Lumenta DB, Kamolz LP, Branski L, Finnerty CC, Herndon DN, Weninger WJ (2015) High-resolution episcopic microscopy (HREM): a useful technique for research in wound care. Ann Anat 197:3–10. https://doi.org/10.1016/j.aanat.2014.10.012

    Article  Google Scholar 

  • Geyer SH, Maurer-Gesek B, Reissig LF, Weninger WJ (2017a) High-resolution episcopic microscopy (HREM) – simple and robust protocols for processing and visualizing organic materials. J Vis Exp 125. https://doi.org/10.3791/56071

  • Geyer SH, Reissig L, Rose J, Wilson R, Prin F, Szumska D, Ramirez-Solis R, Tudor C, White J, Mohun TJ, Weninger WJ (2017b) A staging system for correct phenotype interpretation of mouse embryos harvested on embryonic day 14 (E14.5). J Anat 230(5):710–719. https://doi.org/10.1111/joa.12590

    Article  Google Scholar 

  • Geyer SH, Reissig LF, Husemann M, Hofle C, Wilson R, Prin F, Szumska D, Galli A, Adams DJ, White J, Mohun TJ, Weninger WJ (2017c) Morphology, topology and dimensions of the heart and arteries of genetically normal and mutant mouse embryos at stages S21-S23. J Anat 231(4):600–614. https://doi.org/10.1111/joa.12663

    Article  Google Scholar 

  • Geyer SH, Maurer-Gesek B, Reissig LF, Rose J, Prin F, Wilson R, Galli A, Tudor C, White JK, Mohun TJ, Weninger WJ (2022) The venous system of E14.5 mouse embryos-reference data and examples for diagnosing malformations in embryos with gene deletions. J Anat 240(1):11–22. https://doi.org/10.1111/joa.13536

    Article  Google Scholar 

  • Haslik W, Kamolz LP, Manna F, Hladik M, Rath T, Frey M (2010) Management of full-thickness skin defects in the hand and wrist region: first long-term experiences with the dermal matrix Matriderm. J Plast Reconstr Aesthet Surg 63(2):360–364. https://doi.org/10.1016/j.bjps.2008.09.026[doi]

    Article  Google Scholar 

  • Kohlhauser M, Luze H, Nischwitz SP, Kamolz LP (2021) Historical evolution of skin grafting – a journey through time. Medicina 57(4):348

    Article  Google Scholar 

  • Kupfer ME, Ogle BM (2015) Advanced imaging approaches for regenerative medicine: emerging technologies for monitoring stem cell fate in vitro and in vivo. Biotechnol J 10(10):1515–1528. https://doi.org/10.1002/biot.201400760

    Article  Google Scholar 

  • Liu M, Drexler W (2019) Optical coherence tomography angiography and photoacoustic imaging in dermatology. Photochem Photobiol Sci 18(5):945–962. https://doi.org/10.1039/c8pp00471d

    Article  Google Scholar 

  • Mamalis A, Ho D, Jagdeo J (2015) Optical coherence tomography imaging of normal, chronologically aged, photoaged and photodamaged skin: a systematic review. Dermatol Surg 41(9):993–1005. https://doi.org/10.1097/dss.0000000000000457

    Article  Google Scholar 

  • Mohun TJ, Weninger WJ (2011) Imaging heart development using high-resolution episcopic microscopy. Curr Opin Genet Dev 21(5):573–578. https://doi.org/10.1016/j.gde.2011.07.004

    Article  Google Scholar 

  • Mohun TJ, Weninger WJ (2012a) Embedding embryos for high-resolution episcopic microscopy (HREM). Cold Spring Harb Protoc 2012(6):678–680. https://doi.org/10.1101/pdb.prot069583

    Article  Google Scholar 

  • Mohun TJ, Weninger WJ (2012b) Episcopic three-dimensional imaging of embryos. Cold Spring Harb Protoc 2012(6):641–646. https://doi.org/10.1101/pdb.top069567

    Article  Google Scholar 

  • Mohun TJ, Weninger WJ (2012c) Generation of volume data by episcopic three-dimensional imaging of embryos. Cold Spring Harb Protoc 2012(6):681–682. https://doi.org/10.1101/pdb.prot069591

    Article  Google Scholar 

  • Mohun T, Adams DJ, Baldock R, Bhattacharya S, Copp AJ, Hemberger M, Houart C, Hurles ME, Robertson E, Smith JC, Weaver T, Weninger W (2013) Deciphering the mechanisms of developmental disorders (DMDD): a new programme for phenoty** embryonic lethal mice. Dis Model Mech 6(3):562–566. https://doi.org/10.1242/dmm.011957

    Article  Google Scholar 

  • Naumova AV, Modo M, Moore A, Murry CE, Frank JA (2014) Clinical imaging in regenerative medicine. Nat Biotechnol 32(8):804–818. https://doi.org/10.1038/nbt.2993

    Article  Google Scholar 

  • Norris DP, Grimes DT (2012) Mouse models of ciliopathies: the state of the art. Dis Model Mech 5(3):299–312. https://doi.org/10.1242/dmm.009340

    Article  Google Scholar 

  • Perez-Garcia V, Fineberg E, Wilson R, Murray A, Mazzeo CI, Tudor C, Sienerth A, White JK, Tuck E, Ryder EJ, Gleeson D, Siragher E, Wardle-Jones H, Staudt N, Wali N, Collins J, Geyer S, Busch-Nentwich EM, Galli A, Smith JC, Robertson E, Adams DJ, Weninger WJ, Mohun T, Hemberger M (2018) Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature 555(7697):463–468. https://doi.org/10.1038/nature26002

    Article  Google Scholar 

  • Pieles G, Geyer SH, Szumska D, Schneider J, Neubauer S, Clarke K, Dorfmeister K, Franklyn A, Brown SD, Bhattacharya S, Weninger WJ (2007) microMRI-HREM pipeline for high-throughput, high-resolution phenoty** of murine embryos. J Anat 211(1):132–137. https://doi.org/10.1111/j.1469-7580.2007.00746.x

    Article  Google Scholar 

  • Polykandriotis E, Popescu LM, Horch RE (2010) Regenerative medicine: then and now – an update of recent history into future possibilities. J Cell Mol Med 14(10):2350–2358. https://doi.org/10.1111/j.1582-4934.2010.01169.x

    Article  Google Scholar 

  • Razlighi BD, Kampusch S, Geyer SH, Hoang Le V, Thurk F, Brenner S, Szeles JC, Weninger WJ, Kaniusas E (2018) In-silico ear model based on episcopic images for percutaneous auricular vagus nerve stimulation. In: EMF-Med 2018 – 1st EMF-Med World conference on biomedical applications of electromagnetic fields and COST EMF-MED final event with 6th MCM. https://doi.org/10.23919/EMF-MED.2018.8526013

    Chapter  Google Scholar 

  • Reissig LF, Herdina AN, Rose J, Maurer-Gesek B, Lane JL, Prin F, Wilson R, Hardman E, Galli A, Tudor C, Tuck E, Icoresi-Mazzeo C, White JK, Ryder E, Gleeson D, Adams DJ, Geyer SH, Mohun TJ, Weninger WJ (2019) The Col4a2(em1(IMPC)Wtsi) mouse line: lessons from the deciphering the mechanisms of developmental disorders program. Biology Open 8(8). https://doi.org/10.1242/bio.042895

  • Reissig LF, Moghaddam AS, Prin F, Wilson R, Galli A, Tudor C, White JK, Geyer SH, Mohun TJ, Weninger WJ (2021) Hypoglossal nerve abnormalities as biomarkers for central nervous system defects in mouse lines producing embryonically lethal offspring. Front Neuroanat 15:1. doi:ARTN 625716. https://doi.org/10.3389/fnana.2021.625716

    Article  Google Scholar 

  • Scarfe L, Brillant N, Kumar JD, Ali N, Alrumayh A, Amali M, Barbellion S, Jones V, Niemeijer M, Potdevin S, Roussignol G, Vaganov A, Barbaric I, Barrow M, Burton NC, Connell J, Dazzi F, Edsbagge J, French NS, Holder J, Hutchinson C, Jones DR, Kalber T, Lovatt C, Lythgoe MF, Patel S, Patrick PS, Piner J, Reinhardt J, Ricci E, Sidaway J, Stacey GN, Starkey Lewis PJ, Sullivan G, Taylor A, Wilm B, Poptani H, Murray P, Goldring CEP, Park BK (2017) Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. NPJ Regen Med 2:28. https://doi.org/10.1038/s41536-017-0029-9

    Article  Google Scholar 

  • Stacy MR, Sinusas AJ (2015) Emerging imaging modalities in regenerative medicine. Curr Pathobiol Rep 3(1):27–36. https://doi.org/10.1007/s40139-015-0073-3

    Article  Google Scholar 

  • Tinhofer IE, Zaussinger M, Geyer SH, Meng S, Kamolz LP, Tzou CH, Weninger WJ (2018) The dermal arteries in the cutaneous angiosome of the descending genicular artery. J Anat 232(6):979–986. https://doi.org/10.1111/joa.12792

    Article  Google Scholar 

  • Weninger WJ, Geyer SH, Mohun TJ, Rasskin-Gutman D, Matsui T, Ribeiro I, Costa Lda F, Izpisua-Belmonte JC, Muller GB (2006) High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology. Anat Embryol (Berl) 211(3):213–221. https://doi.org/10.1007/s00429-005-0073-x

    Article  Google Scholar 

  • Weninger WJ, Maurer B, Zendron B, Dorfmeister K, Geyer SH (2009) Measurements of the diameters of the great arteries and semi-lunar valves of chick and mouse embryos. J Microsc 234(2):173–190. https://doi.org/10.1111/j.1365-2818.2009.03159.x

    Article  MathSciNet  Google Scholar 

  • Weninger WJ, Kamolz LP, Geyer SH (2013) 3D visualisation of skin substitutes. In: Kamolz LP, Lumenta DB (eds) Dermal replacements in general, burn, and plastic surgery. Springer, Wien. https://doi.org/10.1007/978-3-7091-1586-2

    Chapter  Google Scholar 

  • Weninger WJ, Geyer SH, Martineau A, Galli A, Adams DJ, Wilson R, Mohun TJ (2014) Phenoty** structural abnormalities in mouse embryos using high-resolution episcopic microscopy. Dis Model Mech 7(10):1143–1152. https://doi.org/10.1242/dmm.016337

    Article  Google Scholar 

  • Weninger WJ, Maurer-Gesek B, Reissig LF, Prin F, Wilson R, Galli A, Adams DJ, White JK, Mohun TJ, Geyer SH (2018) Visualising the cardiovascular system of embryos of biomedical model organisms with high resolution episcopic microscopy (HREM). J Cardiovasc Dev Dis 5(4). https://doi.org/10.3390/jcdd5040058

  • Wiedner M, Tinhofer IE, Kamolz LP, Seyedian Moghaddam A, Justich I, Liegl-Atzwanger B, Bubalo V, Weninger WJ, Lumenta DB (2014) Simultaneous dermal matrix and autologous split-thickness skin graft transplantation in a porcine wound model: a three-dimensional histological analysis of revascularization. Wound Repair Regen 22(6):749–754. https://doi.org/10.1111/wrr.12233

    Article  Google Scholar 

  • Wilson R, McGuire C, Mohun T, Project D (2016) Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines. Nucleic Acids Res 44(D1):D855–D861. https://doi.org/10.1093/nar/gkv1138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang J. Weninger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Geyer, S.H., Moghaddam, A.S., Weninger, W.J. (2023). HREM for Mesoscopic 3D Histology. In: Walter, A., Slezak, P., Mueller, R., Kerckhofs, G. (eds) Bioimaging in Tissue Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-85569-7_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85569-7_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85569-7

  • Online ISBN: 978-3-030-85569-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Navigation