Type of Soil Pollutant and Their Degradation: Methods and Challenges

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Soil pollution is everywhere and poses a serious threat to human and ecological health. Growing population pressure on natural resources beyond the recycling capacity of soil is creating soil pollution. Different organic and inorganic pollutants are dumped on healthy soil/water bodies and reach to human body via food chain contamination. It causes different carcinogenic effects like organ failure (kidney, pancreas, liver), suppression of immunity system, imbalance of endocrine hormone, and failure of reproductive system. With pace of scientific development, pollutant detection capacity, identification of pollutant routes origin to final disposal, interaction with soil particles, and impact on soil health, degradation time and uptake by crop plant are well studied. Soil is acted as a sink for pollutant. Long-term application of polluted water in agricultural production system poses health hazards effect and leads to cancer. Soil biodiversity also reduces and degradation of pollutant is slowed down, which is responsible for longer persistence of chemicals in an ecosystem. Use of tradition and modern tool and techniques for combating soil pollution are advocating. Spread awareness among the grassroot peoples by different agencies to identify the pollutant toxicity prior to dispose. Healthy soil produces healthy crop yield and provides better eco-services for human welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture – an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134

    Google Scholar 

  2. Dheri GS, Brar MS, Malhi SS (2007) Heavy-metal concentration of sewage-contaminated water and its impact on underground water, soil and crop plants in Alluvial soils of Northwestern India. Commun Soil Sci Plant Anal 38:1353–1370

    Article  CAS  Google Scholar 

  3. Rajendiran S, Dotaniya ML, Coumar MV, Panwar NR, Saha JK (2015) Heavy metal polluted soils in India: status and countermeasures. JNKVV Res J 49(3):320–337

    Google Scholar 

  4. Bharti VS, Dotaniya ML, Shukla SP, Yadav VK (2017) Managing soil fertility through microbes: prospects, challenges and future strategies. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability. Springer International, Cham, pp 81–111

    Chapter  Google Scholar 

  5. Dotaniya ML, Dotaniya CK, Sanwal RC, Meena HM (2018) CO2 sequestration and transformation potential of agricultural system. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_87-1

    Chapter  Google Scholar 

  6. Dotaniya ML, Meena VD (2013) Rhizosphere effect on nutrient availability in soil and its uptake by plants – a review. Proc Natl Acad Sci India Sect B Biol Sci 85(1):1–12

    Article  CAS  Google Scholar 

  7. Qadir M, Wichelns D, Raschid-Sally L, Minhas PS, Drechsel P, Bahri A, McCornick P (2007) Agricultural use of marginal-quality water-opportunities and challenges. In: Molden D (ed) Water for food, water for life: a comprehensive assessment of water management in agriculture. Earthscan, London

    Google Scholar 

  8. Meena VD, Dotaniya ML, Saha JK, Patra AK (2015) Antibiotics and antibiotic resistant bacteria in wastewater: impact on environment, soil microbial activity and human health. Afr J Microbiol Res 9(14):965–978

    Article  CAS  Google Scholar 

  9. Masindi V, Muedi KL (2018) Environmental contamination by heavy metal. In: Saleh HEM, Aglan RF (eds) Heavy metals. IntechOpen. https://doi.org/10.5772/intechopen.76082

  10. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Impacts of soil pollution and their assessment. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 37–73

    Chapter  Google Scholar 

  11. Rana L, Dhankhar R, Chhikara S (2010) Soil characteristics affected by long term application of sewage wastewater. Int J Environ Res 4(3):513–518

    CAS  Google Scholar 

  12. Dotaniya ML, Rajendiran S, Meena VD, Coumar MV, Saha JK, Kundu S, Patra AK (2018) Impact of long-term application of sewage on soil and crop quality in Vertisols of central India. Bull Environ Contam Toxicol 101:779–786

    Article  CAS  Google Scholar 

  13. CPCB (2009) Comprehensive environmental assessment of industrial clusters. Ecological impact assessment series: EIAS/5/2009–2010. Central Pollution Control Board, Ministry of Environment and Forest, Government of India

    Google Scholar 

  14. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Status of soil pollution in India. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 271–315

    Chapter  Google Scholar 

  15. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Organic pollutants. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 105–135

    Chapter  Google Scholar 

  16. Duraes N, Novo LAB, Candeias C, Silva EFD (2018) Distribution, transport and fate of pollutants. Soil Pollut. https://doi.org/10.1016/B978-0-12-849873-6.00002-9

  17. Siegel FR (2002) Environmental geochemistry of potentially toxic metals. Springer, Heidelberg

    Book  Google Scholar 

  18. Singh SK (2015) Groundwater arsenic contamination in the middle-Gangetic plain, Bihar (India): the danger arrived. Int Res J Environ Sci 4:70–76

    CAS  Google Scholar 

  19. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79(933):391–396

    Article  CAS  Google Scholar 

  20. Abedin MJ, Meharg AA (2002) Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant Soil 243:57–66

    Article  CAS  Google Scholar 

  21. Jahiruddin M, Islam MA, Islam MR, Islam S (2004) Effects of arsenic contamination on rice crop. Environ Forensic 1:204–210

    Google Scholar 

  22. Onken BM, Hossner LR (1995) Plant uptake and determination of arsenic species in soil solution under flooded conditions. J Environ Qual 24:373–381

    Article  CAS  Google Scholar 

  23. Rahman MA, Hasegawa H, Rahman MM, Islam MN, Miah MM, Tasmen A (2007) Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere 67:1072–1079

    Article  CAS  Google Scholar 

  24. Ci XK, Liu HL, Hao YB, Zhang JW, Peng LI, Dong ST (2012) Arsenic distribution, species, and its effect on maize growth treated with arsenate. J Integr Agric 11:416–423

    Article  CAS  Google Scholar 

  25. Davis RD, Beckett PH, Wollan E (1978) Critical levels of twenty potentially toxic elements in young spring barley. Plant Soil 49:395–408

    Article  CAS  Google Scholar 

  26. Praveen A, Pandey C, Khan E, Panthri M, Gupta M (2020) Silicon mediated genotoxic alterations in Brassica juncea under arsenic stress: comparative study of biochemical and molecular markers. Pedosphere 30(4):517–527

    Article  Google Scholar 

  27. Codling EE, Chaney RL, Green CE (2016) Accumulation of lead and arsenic by potato grown on lead–arsenate-contaminated orchard soils. Commun Soil Sci Plant Anal 47:799–807

    Article  CAS  Google Scholar 

  28. Deuel LE, Swoboda AR (1972) Arsenic toxicity to cotton and soybeans. J Environ Qual 1:317–320

    Article  CAS  Google Scholar 

  29. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  CAS  Google Scholar 

  30. Ali W, Isayenkov SV, Zhao FJ, Maathuis FJ (2009) Arsenite transport in plants. Cell Mol Life Sci 66:2329–2339

    Article  CAS  Google Scholar 

  31. Zhao F, Ma J, Meharg A, McGrath S (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  Google Scholar 

  32. Mondal S, Dutta P, Bandopadhyay P, Maji S (2020) Arsenic contamination in major food crops: issues and mitigation in Indian subcontinent perspective. In: Hasanuzzaman M (ed) Agronomic crops. Springer, Singapore, p 256

    Google Scholar 

  33. Mondal S, Bandopadhyay P, Kundu R, Pal S (2012) Arsenic accumulation in elephant foot yam (Amorphophallus paeniifolius Dennst. Nicolson) in Deltaic West Bengal: effect of irrigation sources and nutrient management. J Root Crops 38:46–50

    Google Scholar 

  34. Bakhat HF, Zia Z, Fahad S, Abbas S, Hammad HM, Shahzad AN, Abbas F, Alharby H, Shahid M (2017) Arsenic uptake, accumulation and toxicity in rice plants: possible remedies for its detoxification: a review. Environ Sci Pollut Res 24:9142–9158

    Article  CAS  Google Scholar 

  35. Mitra A, Chatterjee S, Moogouei R, Gupta DK (2017) Arsenic accumulation in Rice and probable mitigation approaches: a review. Agronomy 7:67

    Article  CAS  Google Scholar 

  36. Brammer H (2009) Mitigation of arsenic contamination in irrigated paddy soils in South and South-east Asia. Environ Int 35:856–863

    Article  CAS  Google Scholar 

  37. Oosterhuis FH, Brouwer FH, Wijnants HJ (2000) A possible EU wide charge on cadmium in phosphate fertilizers. Economic and environmental implications final report to the European commission. Report no E-00/02, p 75

    Google Scholar 

  38. Williams CH, David DJ (1973) The effect of superphosphate on the cadmium content of soils and plants. Aus J Soil Res 11:43–56

    Article  CAS  Google Scholar 

  39. Elsner H (2008) Stand der Phosphat-Reserven weltweit (Status of phosphate reserves worldwide). Braunschweiter Nährstofftage. Julius Kühn-Institut, Hannover, Germany, Electronic Presentation, Bundesanstalt für Geowissenschaften und Rohstoffe

    Google Scholar 

  40. Coumar MV, Parihar RS, Dwivedi AK, Saha JK, Lakaria BL, Biswas AK, Rajendiran S, Dotaniya ML, Kundu S (2016) Pigeon pea biochar as a soil amendment to repress copper mobility in soil and its uptake by spinach. BioRes 11(1):1585–1595

    CAS  Google Scholar 

  41. Coumar MV, Parihar RS, Dwivedi AK, Saha JK, Rajendiran S, Dotaniya ML, Kundu S (2016) Impact of pigeon pea biochar on cadmium mobility in soil and transfer rate to leafy vegetable spinach. Environ Monit Assess 188:31

    Article  CAS  Google Scholar 

  42. Meena VD, Dotaniya ML, Saha JK, Meena BP, Das H, Beena PAK (2019) Sustainable C and N management under metal-contaminated soils. In: Datta R, Meena R, Pathan S, Ceccherini M (eds) Carbon and nitrogen cycling in soil. Springer, Singapore, pp 293–336

    Google Scholar 

  43. Eliopoulos EM, Megremi I, Cathy A, Theodoratou C, Vasilatos C (2013) Spatial evolution of the chromium contamination in soils from the assopos to Thiva Basin and C. Evia (Greece) and potential source(s): anthropogenic versus natural processes. Geosciences 3(2):140–158

    Article  CAS  Google Scholar 

  44. Lokhande RS, Singare PU, Pimple DS (2011) Toxicity study of heavy metals pollutants in waste water effluent samples collected from Taloja industrial estate of Mumbai, India. Resour Environ 1(1):13–19

    Google Scholar 

  45. Baize D (1997) Total contents of metallic trace elements in soils. INRA, Paris

    Google Scholar 

  46. Juste C, Mench M (1992) Long-term application of sewage sludge and its effects on metal uptake by crops. In: Adriano DC (ed) Biogeochemistry of trace metals. Lewis Publishers, Boca Raton, pp 159–193

    Google Scholar 

  47. Shenbagavalli S, Mahimairaja S (2012) Biotransformation and bioavailability of chromium contaminated soil and the effect of poultry manure and pseudomonas. Int J Plant Animal Environ Sci 2(1):190–196

    CAS  Google Scholar 

  48. Dotaniya ML, Rajendiran S, Meena VD, Saha JK, Coumar MV, Kundu S, Patra AK (2016) Influence of chromium contamination on carbon mineralization and enzymatic activities in Vertisol. Agric Res 6(1):91–96

    Article  CAS  Google Scholar 

  49. Dotaniya ML, Saha JK, Rajendiran S, Coumar MV, Meena VD, Das H, Kumar A, Patra AK (2019) Reducing chromium uptake through application of calcium and sodium in spinach. Environ Monit Assess 191:754

    Article  CAS  Google Scholar 

  50. Dotaniya ML, Saha JK, Rajendiran S, Coumar MV, Meena VD, Kundu S, Patra AK (2019) Chromium toxicity mediated by application of chloride and sulphate ions in Vertisol of Central India. Environ Monit Assess 191:429

    Article  CAS  Google Scholar 

  51. Krishnamurthy S, Wilkens MM (1994) Environmental chemistry of Cr. Northeast Geol 16:14–17

    Google Scholar 

  52. Purakastha TJ, Chhonkar P (2010) Phytoremediation of heavy metal contaminated soils. Soil Biol 19:389–429

    Article  CAS  Google Scholar 

  53. Dotaniya ML, Das H, Meena VD (2014) Assessment of chromium efficacy on germination, root elongation, and coleoptile growth of wheat (Triticum aestivum L.) at different growth periods. Environ Monit Assess 186:2957–2963

    Article  CAS  Google Scholar 

  54. Dotaniya ML, Thakur JK, Meena VD, Jajoria DK, Rathor G (2014) Chromium Pollution: a threat to environment. Agric Rev 35(2):153–157

    Article  Google Scholar 

  55. Zhang R, Wilson VL, Hou A, Meng G (2015) Source of lead pollution, its influence on public health and the countermeasures. Int J Health Animal Sci Food Saf 2:18–31

    Google Scholar 

  56. Dotaniya ML, Dotaniya CK, Solanki P, Meena VD, Doutaniya RK (2020) Lead contamination and its dynamics in soil–plant system. In: Gupta D, Chatterjee S, Walther C (eds) Lead in plants and the environment. Radionuclides and heavy metals in the environment. Springer, Cham. https://doi.org/10.1007/978-3-030-21638-2_5

    Chapter  Google Scholar 

  57. Dotaniya ML, Meena VD, Kumar K, Meena BP, Jat SL, Lata M, Ram A, Dotaniya CK, Chari MS (2016) Impact of biosolids on agriculture and biodiversity. In: Bamniya BR, Gadi BR (eds) Environmental impact on biodiversity. Today and Tomorrow’s Printer and Publisher, New Delhi, pp 11–20

    Google Scholar 

  58. Dotaniya ML, Pipalde JS (2018) Soil enzymatic activities as influenced by lead and nickel concentrations in a Vertisol of Central India. Bull Environ Contam Toxicol 101(3):380–385

    Article  CAS  Google Scholar 

  59. Magwedere K, Shimwino J, Hemberger Y, Hoffman LC, Midzi EM, Dziva F (2013) Lead and cadmium levels in liver, kidney and muscle of harvested wild springbok (Antidorcus marsupialis) under extensive management in Southern and Southeastern Namibia. South Afr J Wildlife Res 43(1):52–60

    Article  Google Scholar 

  60. David CB, Andrew MB (2006) Childhood lead poisoning: the torturous path from science to policy. J Clin Invest 116(4):853–857

    Article  CAS  Google Scholar 

  61. Pipalde JS, Dotaniya ML (2018) Interactive effects of lead and nickel contamination on nickel mobility dynamics in spinach. Int J Environ Res 12(5):553–560

    Article  CAS  Google Scholar 

  62. Dotaniya ML, Pipalde JS, Jain RC, Rajendiran S, Coumar MV, Saha JK, Patra AK (2019) Can lead and nickel interaction affect plant nutrient uptake pattern in spinach (Spinacia oleracea)? Agric Res. https://doi.org/10.1007/s40003-019-00428-4

  63. Pan JQ, Sun YZ, Li W, Knight J, Manthiram A (2013) A green lead hydrometallurgical process based on a hydrogen-lead oxide fuel cell. Nat Commun 4:2178

    Article  CAS  Google Scholar 

  64. McBride M, Richards B, Steenhuis T (2004) Bioavailability and crop uptake of trace elements in soil columns amended with sewage sludge products. Plant Soil 262:71–84

    Article  CAS  Google Scholar 

  65. Meena VD, Dotaniya ML, Saha JK, Das H, Patra AK (2020) Impact of lead contamination on agroecosystem and human health. In: Gupta D, Chatterjee S, Walther C (eds) Lead in plants and the environment. Radionuclides and heavy metals in the environment. Springer, Cham. https://doi.org/10.1007/978-3-030-21638-2_4

    Chapter  Google Scholar 

  66. Berlin M, Zalups RK, Fowler BA (2007) Mercury. In: Nordberg GF, Fowler BA, Nordberg M, Friberg LT (eds) Handbook on the toxicology of metals. Elsevier publishing, New York, pp 1–50

    Google Scholar 

  67. Bernhoft RA (2012) Mercury toxicity and treatment: a review of the literature. J Environ Public Health 2012:460508

    Article  Google Scholar 

  68. Ilback NG, Sundberg J, Oskarsson A (1991) Methyl mercury exposure via placenta and milk impairs natural killer (NK) cell function in newborn rats. Toxicol Lett 58(2):149–158

    Article  CAS  Google Scholar 

  69. Wang L, Hou D, Cao Y, Ok YS, Tack FMG, Rinklebe J, Connor DO (2020) Remediation of mercury contaminated soil, water, and air: a review of emerging materials and innovative technologies. Environ Int 134:105281

    Article  CAS  Google Scholar 

  70. EPA (2018) What are EPA’s drinking water regulations for nitrate? Ground Water & Drinking Water. Retrieved 13 Nov 2018

    Google Scholar 

  71. Bagheri H, Hajian A, Rezaei M, Shirzadmehr A (2017) Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J Hazard Mater 324:762–772

    Article  CAS  Google Scholar 

  72. Meena BP, Kumar A, Lal B, Meena RL, Shirale AO, Dotaniya ML, Kumar K, Sinha NK, Meena SN, Ram A, Gautam P (2019) Sustainability of popcorn-potato crop** system improves due to organic manure application and its effect on soil health. Potato Res. https://doi.org/10.1007/s11540-018-9410-3

  73. Dotaniya ML, Meena MD, Sharma AK, Rai PK (2020) Phosphorus management for sustainable crop production. DRMR Bull 1:1–49

    Google Scholar 

  74. Sharpley A (2016) Managing agricultural phosphorus to minimize water quality impacts. Sci Agric 73(1):1–8

    Article  CAS  Google Scholar 

  75. Andersen JM (1975) Influence of pH on release of phosphorus from lake sediments. Arch Hydrobiol 76(4):411–419

    CAS  Google Scholar 

  76. Zhang YL, Dai JL, Wang RQ, Zhang J (2008) Effects of long-term sewage irrigation on agricultural soil microbial structural and functional characterizations in Shandong, China. Eur J Soil Biol 44:84–91

    Article  CAS  Google Scholar 

  77. Bostrom B, Jansson M, Forsberg C (1982) Phosphorus release from lake sediments. Archiv fur Hydrobiologie Beihefte Ergebnisse der Limnologie 18:5–59

    Google Scholar 

  78. Dotaniya ML, Meena VD, Rajendiran S, Coumar MV, Saha JK, Kundu S, Patra AK (2016) Geo-accumulation indices of heavy metals in soil and groundwater of Kanpur, India under long term irrigation of tannery effluent. Bull Environ Contam Toxicol 98(5):706–711

    Article  CAS  Google Scholar 

  79. Dotaniya ML, Rajendiran S, Coumar MV, Meena VD, Saha JK, Kundu S, Kumar A, Patra AK (2017) Interactive effect of cadmium and zinc on chromium uptake in spinach grown on Vertisol of Central India. Int J Environ Sci Technol 15(2):441–448

    Article  CAS  Google Scholar 

  80. Masindi V, Gitari MW, Tutu H (2016) Passive remediation of acid mine drainage. LAP Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  81. Dotaniya ML, Prasad D, Meena HM, Jajoria DK, Narolia GP, **oliya KK, Meena OP, Kumar K, Meena BP, Ram A, Das H, Chari MS, Pal S (2013) Influence of phytosiderophore on iron and zinc uptake and rhizospheric microbial activity. Afr J Microbiol Res 7(51):5781–5788

    Article  CAS  Google Scholar 

  82. Dotaniya ML, Rajendiran S, Meena BP, Meena AL, Meena BL, Jat RL, Saha JK (2016) Elevated carbon dioxide (CO2) and temperature vis- a-vis carbon sequestration potential of global terrestrial ecosystem. In: Bisht JK et al (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 225–256

    Chapter  Google Scholar 

  83. Pimentel D, Wilson C, McCullum C, Huang R, Dwen P, Flack J et al (1997) Economic and environmental benefits of biodiversity. BioSci JSTOR 47(11):747–757

    Google Scholar 

  84. Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP et al (2007) The role of ecological theory in microbial ecology. Nat Rev Microbiol 5(5):384–392

    Article  CAS  Google Scholar 

  85. Prosser JI (2012) Ecosystem processes and interactions in a morass of diversity. FEMS Microb Ecol 81(3):507–519

    Article  CAS  Google Scholar 

  86. Dotaniya ML, Dotaniya CK, Solanki P, Meena VS, Meena MD, Choudhary RL (2019) Microbial resources in management of C sequestration, greenhouse gases, and bioremediation processes. In: Singh JS (ed) New and future developments in microbial biotechnology and bioengineering. https://doi.org/10.1016/B978-0-12-818258-1.00005-4

    Chapter  Google Scholar 

  87. Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Pvt Ltd, New Delhi, pp 38–56

    Google Scholar 

  88. Bouyoucos GL (1962) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464

    Article  Google Scholar 

  89. Walkley AJ, Black IA (1934) An examination of the Degtjaff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  90. Olsen SR, Cole CV, Watanable FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular, vol 939. U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  91. Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  92. Subbiah BV, Asija GL (1956) A Rapid procedure for the determination of available nitrogen in soils. Curr Sci 25:259–260

    CAS  Google Scholar 

  93. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–448

    Article  CAS  Google Scholar 

  94. Singh D, Chhonkar PK, Dwivedi BS (2005) Manual on soil, plant and water analysis. Westville Publishing House, New Delhi, p 200

    Google Scholar 

  95. Casida LE, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376

    Article  CAS  Google Scholar 

  96. Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  97. Adam G, Duncan H (2001) Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem 33:943–951

    Article  CAS  Google Scholar 

  98. Dotaniya ML, Meena VD, Saha JK, Rajendiran S, Patra AK, Dotaniya CK, Meena HM, Kumar K, Meena BP (2018) Environmental impact measurements: tool and techniques. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_60-1

    Chapter  Google Scholar 

  99. Biziuk M, Namieśnik J, Czerwiński J, Gorlo D, Makuch B, Janicki W, Polkowska Z, Wolska L (1996) Occurrence and determination of organic pollutants in tap and surface waters of the Gdańsk District. J Chromatogr A 733(1–2):171–183

    Article  CAS  Google Scholar 

  100. Dotaniya ML, Aparna K, Dotaniya CK, Singh M, Regar KL (2019) Role of soil enzymes in sustainable crop production. In: Khudus M et al (eds) Enzymes in food biotechnology. Springer International, Singapore, pp 569–589

    Chapter  Google Scholar 

  101. Chhonkar PK, Bhadraray S, Patra AK, Purakayastha TJ (2007) Experiments in soil biology and biochemistry. Westville Publishing House, New Delhi, p 155

    Google Scholar 

  102. Spivakov BY, Maryutina TA, Muntau H (1999) Phosphorus speciation in water and sediments. Int Union Pure Appl Chem 71:2161–2176

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dotaniya, M.L. et al. (2021). Type of Soil Pollutant and Their Degradation: Methods and Challenges. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_65

Download citation

Publish with us

Policies and ethics

Navigation