Plant Fibers-Based Sustainable Biocomposites

Ancients to Recent Developments

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Recognizing the facts of high cost, depleting natural feedstocks of energy and materials along with resulting effects by their production and use on environmental emission of green house gases into environment, potential efforts have been made on the use of low-cost, abundant availability, eco-friendly, and energy-saving plant fibers-based biocomposites (PBB) and process. Properties of plant fiber-based biocomposites largely influenced by a number of variables, like fiber types, modification of fibers, processing techniques, and environmental condition. This chapter summarized the ancient to recent research on development of plant fibers-based green and sustainable composite materials types along with processing techniques and properties. Plant fibers-based biocomposites have been usefully used in the field of automobile, construction, packaging, medical, and other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Jahan A, Rahman MM, Kabir H et al (2012) Comparative study of physical and elastic properties of jute and glass fiber reinforced LDPE composites. Int J Sci Technol Res 1:68–72

    Google Scholar 

  2. Weber DN, Shaw CF, Petering DH (1987) Euglena gracilis cadmium-binding protein-II contains sulfide ion. J Biol Chem 262:6962–6964

    CAS  Google Scholar 

  3. Herakovich CT (2012) Mechanics of composites: a historical review. Mech Res Commun 41:1–20. https://doi.org/10.1016/j.mechrescom.2012.01.006

    Article  Google Scholar 

  4. Nagavally RR (2017) Composite materials – history, types, fabrication techniques, advantages, and applications. Int J Mech Prod Eng 5:82–87

    Google Scholar 

  5. Kamrun N. Keya, Nasrin A. Kona, Farjana A. Koly, Kazi Madina Maraz, Md. Naimul Islam, Ruhul A. Khan (2019) Natural fiber reinforced polymer composites: history, types, advantages, and applications. Mater Eng Res 1(2):69–87. https://doi.org/10.25082/MER.2019.02.006

  6. Mwaikambo L (2006) Review of the history, properties and application of plant fibres. Afr J Sci Technol 7:121

    Google Scholar 

  7. Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32(12):1905–1915. https://doi.org/10.1002/pc.21224

    Article  CAS  Google Scholar 

  8. McMullen P (1984) Fibre/resin composites for aircraft primary structures: a short history, 1936–1984. Composites 15:222–230

    Article  CAS  Google Scholar 

  9. Gohil PP, Shaikh AA (2011) Cotton-epoxy composites: development and mechanical characterization. Key Eng Mater 471–472:291–296. https://doi.org/10.4028/www.scientific.net/KEM.471-472.291

    Article  CAS  Google Scholar 

  10. Jassal M, Ghosh S (2002) Aramid fibres – an overview. Indian J Fibre Text Res 27:290–306

    CAS  Google Scholar 

  11. Yu K, Shi Q, Dunn ML et al (2016) Carbon fiber reinforced thermoset composite with near 100% recyclability. Adv Funct Mater 26:6098–6106. https://doi.org/10.1002/adfm.201602056

    Article  CAS  Google Scholar 

  12. Sathishkumar TP, Satheeshkumar S, Naveen J (2014) Glass fiber-reinforced polymer composites – a review. J Reinf Plast Compos 33:1258–1275. https://doi.org/10.1177/0731684414530790

    Article  CAS  Google Scholar 

  13. Balaji A, Karthikeyan B, Sundar Raj C (2015) Bagasse fiber – the future biocomposite material: a review. Int J Chem Tech Res 7:223–233

    Google Scholar 

  14. Singla M, Dwivedi DD, Singh L, Chawla V (2009) Development of aluminium based silicon carbide particulate metal matrix composite. J Miner Mater Charact Eng 08:455–467. https://doi.org/10.4236/jmmce.2009.86040

    Article  Google Scholar 

  15. Attar H, Ehtemam-Haghighi S, Kent D, Dargusch MS (2018) Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: a review. Int J Mach Tools Manuf 133:85–102. https://doi.org/10.1016/j.ijmachtools.2018.06.003

    Article  Google Scholar 

  16. Amirkhanlou S, Ji S (2019) A review on high stiffness aluminum-based composites and bimetallics. Crit Rev Solid State Mater Sci:1–21. https://doi.org/10.1080/10408436.2018.1485550

  17. Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites – a review. Int Mater Rev 55:41–64. https://doi.org/10.1179/095066009X12572530170543

    Article  CAS  Google Scholar 

  18. Hihara LH, Latanision RM (1994) Corrosion of metal matrix composites. Int Mater Rev 39:245–264

    Article  CAS  Google Scholar 

  19. Mukerji J (1993) Ceramic matrix composites. Def Sci J 43:385–395. https://doi.org/10.14429/dsj.43.4292

    Article  CAS  Google Scholar 

  20. Donald IW, Mcmillan PW (1976) Review. Ceramic-matrix composites. J Mater Sci 11:949–972

    Article  CAS  Google Scholar 

  21. Niiharab K (1998) Microstructure and high-temperature of S & Nd-Sic nanocomposite. Inorg Mater 18:907–914

    Google Scholar 

  22. Reimanis IE (1997) A review of issues in the fracture of interfacial ceramics and ceramic composites. Mater Sci Eng A 237:159–167. https://doi.org/10.1016/S0921-5093(97)00125-1

    Article  Google Scholar 

  23. Keya KN, Kona NA, Koly FA et al (2019) Natural fiber reinforced polymer composites: history, types, advantages, and applications. Mater Eng Res 1:69–87. https://doi.org/10.25082/mer.2019.02.006

    Article  Google Scholar 

  24. George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471–1485. https://doi.org/10.1002/pen.10846

    Article  CAS  Google Scholar 

  25. Verma D, Gope PC, Maheshwari MK, Sharma RK (2012) Bagasse fiber composites – a review. J Mater Environ Sci 3:1079–1092

    Google Scholar 

  26. Conference paper, G. Pamuk, F. Ceken, (2008) Textile Reinforced Composites for Automotive Applications, International conference of Applied Research in textiles, 0–6. https://www.researchgate.net/publication/277005744_Textile_Reinforced_Composites_for_Automotive_Applications

  27. Tan BK, Ching YC, Poh SC et al (2015) A review of natural fiber reinforced poly(vinyl alcohol) based composites: application and opportunity. Polymers 7:2205–2222. https://doi.org/10.3390/polym7111509

    Article  CAS  Google Scholar 

  28. Kumar R, Hynes NRJ, Saravanakumar SS et al (2020) Concept of self-repair and efficiency measurement in polymer matrix composites. Elsevier, New York

    Book  Google Scholar 

  29. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784. https://doi.org/10.1016/j.compscitech.2006.03.002

    Article  CAS  Google Scholar 

  30. Favier V, Canova GR, Cavaille JY et al (1995) Polymers for advanced technologies nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355

    Article  CAS  Google Scholar 

  31. Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R (2005) Preparation and characterization of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite films with or without heat treatment. Polymer 46:5637–5644. https://doi.org/10.1016/j.polymer.2005.04.069

    Article  CAS  Google Scholar 

  32. Roohani M, Habibi Y, Belgacem NM et al (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498. https://doi.org/10.1016/j.eurpolymj.2008.05.024

    Article  CAS  Google Scholar 

  33. Li B, Wu C, Zhang Y et al (2020) Microstructure and thermal and tensile properties of poly(vinyl alcohol) nanocomposite films reinforced by polyacrylamide grafted cellulose nanocrystals. J Macromol Sci Part B Phys 59:223–234. https://doi.org/10.1080/00222348.2019.1710364

    Article  CAS  Google Scholar 

  34. Visakh PM, Thomas S, Oksman K, Mathew AP (2012) Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: processing and mechanical/thermal properties. Compos A Appl Sci Manuf 43:735–741. https://doi.org/10.1016/j.compositesa.2011.12.015

    Article  CAS  Google Scholar 

  35. Ljungberg N, Cavaillé JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292. https://doi.org/10.1016/j.polymer.2006.07.013

    Article  CAS  Google Scholar 

  36. Bras J, Hassan ML, Bruzesse C et al (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crop Prod 32:627–633. https://doi.org/10.1016/j.indcrop.2010.07.018

    Article  CAS  Google Scholar 

  37. Chazeau L, Cavaill JY, Canova G et al (1999) Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers. J Appl Polym Sci 71:1797–1808. https://doi.org/10.1002/(sici)1097-4628(19990314)71:11<1797::aid-app9>3.0.co;2-e

    Article  CAS  Google Scholar 

  38. Gassan J, Gutowski VS (2000) Effects of corona discharge and UV treatment on the properties of jute-fibre expoxy composites. Compos Sci Technol 60:2857–2863. https://doi.org/10.1016/S0266-3538(00)00168-8

    Article  CAS  Google Scholar 

  39. Abosaed R, Hossein MP, Mohammad M (2002) Application of low temperature plasma on modification of polypropylene. J Plasma Fusion Res 5:255–260

    Google Scholar 

  40. Biagiotti J, Puglia D, Kenny JM (2004) A review on natural fibre-based composites – part II. J Nat Fibers 1:37–68. https://doi.org/10.1300/J395v01n03

    Article  CAS  Google Scholar 

  41. Diani J, Gall K (2006) Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers. Polym Eng Sci 46:486–492. https://doi.org/10.1002/pen.20497

    Article  CAS  Google Scholar 

  42. Ray D, Sarkar BK, Rana AK, Bose NR (2001) Effect of alkali treated jute fibres on composite properties. Bull Mater Sci 24:129–135. https://doi.org/10.1007/BF02710089

    Article  CAS  Google Scholar 

  43. Vilay V, Mariatti M, Mat Taib R, Todo M (2008) Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites. Compos Sci Technol 68:631–638. https://doi.org/10.1016/j.compscitech.2007.10.005

    Article  CAS  Google Scholar 

  44. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B Eng 43:2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053

    Article  CAS  Google Scholar 

  45. Geethamma VG, Joseph R, Thomas S (1995) Short coir fiber-reinforced natural rubber composites: effects of fiber length, orientation, and alkali treatment. J Appl Polym Sci 55:583–594. https://doi.org/10.1002/app.1995.070550405

    Article  CAS  Google Scholar 

  46. Aziz SH, Ansell MP (2004) The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 1 – polyester resin matrix. Compos Sci Technol 64:1219–1230. https://doi.org/10.1016/j.compscitech.2003.10.001

    Article  CAS  Google Scholar 

  47. Yan L, Chouw N, Yuan X (2012) Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. J Reinf Plast Compos 31:425–437. https://doi.org/10.1177/0731684412439494

    Article  CAS  Google Scholar 

  48. Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2:413–422. https://doi.org/10.3144/expresspolymlett.2008.50

    Article  CAS  Google Scholar 

  49. Teli MD, Valia SP (2013) Acetylation of jute fiber to improve oil absorbency. Fibers Polym 14:915–919. https://doi.org/10.1007/s12221-013-0915-8

    Article  CAS  Google Scholar 

  50. Van De Velde K, Kiekens P (2001) Thermoplastic polymers: overview of several properties and their consequences in flax fibre reinforced composites. Polym Test 20:885–893. https://doi.org/10.1016/S0142-9418(01)00017-4

    Article  Google Scholar 

  51. Sapieha S, Allard P, Zang YH (1990) Dicumyl peroxide-modified cellulose/LLDPE composites. J Appl Polym Sci 41:2039–2048. https://doi.org/10.1002/app.1990.070410910

    Article  CAS  Google Scholar 

  52. Guedes J, Florentino WM, Mulinari DR (2016) Thermoplastics polymers reinforced with natural fibers. Elsevier, New York

    Book  Google Scholar 

  53. Sreekala MS, Kumaran MG, Thomas S (2002) Water sorption in oil palm fiber reinforced phenol formaldehyde composites. Compos Appl Sci Manuf 33:763–777. https://doi.org/10.1016/S1359-835X(02)00032-5

    Article  Google Scholar 

  54. Kumar V, Kumari M, Kumar R (2014) Graft copolymers of natural fibers for green composites. Carbohydr Polym 104:87–93. https://doi.org/10.1016/j.carbpol.2014.01.016

    Article  CAS  Google Scholar 

  55. Corrales F, Vilaseca F, Llop M et al (2007) Chemical modification of jute fibers for the production of green-composites. J Hazard Mater 144:730–735. https://doi.org/10.1016/j.jhazmat.2007.01.103

    Article  CAS  Google Scholar 

  56. Goriparthi BK, Suman KNS, Mohan Rao N (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos A Appl Sci Manuf 43:1800–1808. https://doi.org/10.1016/j.compositesa.2012.05.007

    Article  CAS  Google Scholar 

  57. Khan MA, Hinrichsen G, Drzal LT (2001) Influence of novel coupling agents on mechanical properties of jute reinforced polypropylene composite. J Mater Sci Lett 20:1711–1713. https://doi.org/10.1023/A:1012489823103

    Article  CAS  Google Scholar 

  58. Sun Z, Mingming W (2019) Effects of sol-gel modification on the interfacial and mechanical properties of sisal fiber reinforced polypropylene composites. Ind Crop Prod 137:89–97. https://doi.org/10.1016/j.indcrop.2019.05.021

    Article  CAS  Google Scholar 

  59. Morshedian J, Hosseinpour PM (2009) Polyethylene cross-linking by two-step silane method: a review. Iran Polym J 18:103–128

    CAS  Google Scholar 

  60. Mahir FI, Keya KN, Sarker B et al (2019) A brief review on natural fiber used as a replacement of synthetic fiber in polymer composites. Mater Eng Res 1:88–99. https://doi.org/10.25082/mer.2019.02.007

    Article  Google Scholar 

  61. Thesis:Taib RM (1998) Cellulose fiber reinforced thermoplastic composites: Processing and Product Charateristics 67–113. https://doi.org/hdl.handle.net/10919/35428

    Google Scholar 

  62. Balla VK, Kate KH, Satyavolu J et al (2019) Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Compos Part B Eng 174:106956. https://doi.org/10.1016/j.compositesb.2019.106956

    Article  CAS  Google Scholar 

  63. Rana AK, Mitra BC, Banerjee AN (1999) Short jute fiber-reinforced polypropylene composites: dynamic mechanical study. J Appl Polym Sci 71:531. https://doi.org/10.1002/(sici)1097-4628(19990124)71:4<531::aid-app2>3.3.co;2-9

    Article  CAS  Google Scholar 

  64. Raghavendra G, Ojha S, Acharya SK, Pal SK (2014) Jute fiber reinforced epoxy composites and comparison with the glass and neat epoxy composites. J Compos Mater 48:2537–2547. https://doi.org/10.1177/0021998313499955

    Article  CAS  Google Scholar 

  65. Mache A, Deb A, Gupta N (2019) An experimental study on performance of jute-polyester composite tubes under axial and transverse impact loading. Polym Compos 41(5):1796–1812. https://doi.org/10.1002/pc.25498

    Article  CAS  Google Scholar 

  66. Selvakumar K, Meenakshisundaram O (2019) Mechanical and dynamic mechanical analysis of jute and human hair-reinforced polymer composites. Polym Compos 40:1132–1141. https://doi.org/10.1002/pc.24818

    Article  CAS  Google Scholar 

  67. Bindal A, Singh S, Batra NK, Khanna R (2013) Development of glass/jute fibers reinforced polyester composite. Indian J Mater Sci 2013:1–6. https://doi.org/10.1155/2013/675264

    Article  Google Scholar 

  68. Miah MJ, Khan MA, Khan RA (2011) Fabrication and characterization of jute fiber reinforced low density polyethylene based composites: effects of chemical treatment. J Sci Res 3:249–259. https://doi.org/10.3329/jsr.v3i2.6763

    Article  CAS  Google Scholar 

  69. Soykeabkaew N, Supaphol P, Rujiravanit R (2004) Preparation and characterization of jute- and flax-reinforced starch-based composite foams. Carbohydr Polym 58:53–63. https://doi.org/10.1016/j.carbpol.2004.06.037

    Article  CAS  Google Scholar 

  70. Abdullah-Al-Kafi, Abedin MZ, Beg MDH et al (2006) Study on the mechanical properties of jute/glass fiber-reinforced unsaturated polyester hybrid composites: effect of surface modification by ultraviolet radiation. J Reinf Plast Compos 25:575–588. https://doi.org/10.1177/0731684405056437

    Article  CAS  Google Scholar 

  71. Masoodi R, Pillai KM (2012) A study on moisture absorption and swelling in bio-based jute-epoxy composites. J Reinf Plast Compos 31:285–294. https://doi.org/10.1177/0731684411434654

    Article  CAS  Google Scholar 

  72. Khan RA, Khan MA, Zaman HU et al (2012) Fabrication and characterization of jute fabric-reinforced PVC-based composite. J Thermoplast Compos Mater 25:45–58. https://doi.org/10.1177/0892705711404726

    Article  Google Scholar 

  73. Liu L, Yu J, Cheng L, Yang X (2009) Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polym Degrad Stab 94:90–94. https://doi.org/10.1016/j.polymdegradstab.2008.10.013

    Article  CAS  Google Scholar 

  74. Shrivastava VK (2017) A review: sisal fibre behaviour as reinforcement in composites. J Basic Appl Eng Res 4:172–175

    Google Scholar 

  75. Fung KL, **ng XS, Li RKY et al (2003) An investigation on the processing of sisal fibre reinforced polypropylene composites. Compos Sci Technol 63:1255–1258. https://doi.org/10.1016/S0266-3538(03)00095-2

    Article  CAS  Google Scholar 

  76. Prabhu L, Krishnaraj V, Gokulkumar S et al (2019) Mechanical, chemical and acoustical behavior of sisal – tea waste – glass fiber reinforced epoxy based hybrid polymer composites. Mater Today Proc 16:653–660. https://doi.org/10.1016/j.matpr.2019.05.142

    Article  CAS  Google Scholar 

  77. Pappu A, Pickering KL, Kumar V (2019) Industrial crops & products manufacturing and characterization of sustainable hybrid composites using sisal and hemp fi bres as reinforcement of poly (lactic acid) via injection moulding. Ind Crop Prod 137:260–269. https://doi.org/10.1016/j.indcrop.2019.05.040

    Article  CAS  Google Scholar 

  78. Rao S, Bhattacharyya D, Jayaraman K, Fernyhough A (2008) Influence of material parameters on the mechanical properties of extruded sisal fibre-polypropylene composites. Int SAMPE Symp Exhib 52:1625–1640

    Google Scholar 

  79. Kumre A, Rana RS, Purohit R (2017) A review on mechanical property of sisal glass fiber reinforced polymer composites. Mater Today Proc 4:3466–3476. https://doi.org/10.1016/j.matpr.2017.02.236

    Article  Google Scholar 

  80. Ray K, Patra H, Swain AK et al (2020) Glass/jute/sisal fiber reinforced hybrid polypropylene polymer composites: fabrication and analysis of mechanical and water absorption properties. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.02.964

  81. Gohil PP, Shaikh AA (2010) Experimental investigation and micro mechanics assessment for longitudinal elastic modulus in unidirectional cotton-polyester composites. Int J Eng Technol 2:111–117

    CAS  Google Scholar 

  82. Baccouch W, Ghith A, Yalcin-Enis I et al (2020) Enhancement of fiber-matrix interface of recycled cotton fibers reinforced epoxy composite for improved mechanical properties. Mater Res Express 7. https://doi.org/10.1088/2053-1591/ab6c04

  83. Zhang W, Zhang X, Wu Z et al (2020) Mechanical, electromagnetic shielding and gas sensing properties of flexible cotton fiber/polyaniline composites. Compos Sci Technol 188:107966. https://doi.org/10.1016/j.compscitech.2019.107966

    Article  CAS  Google Scholar 

  84. Zampaloni M (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos A Appl Sci Manuf 38:1569–1580. https://doi.org/10.1016/j.compositesa.2007.01.001

    Article  CAS  Google Scholar 

  85. Sapuan SM, Pua F, AL-Oqla FM (2013) Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites. Mater Des 50:467–470. https://doi.org/10.1016/j.matdes.2013.03.013

    Article  CAS  Google Scholar 

  86. Shahzad A (2011) Hemp fiber and its composites – a review. J Compos Mater 46:973–986

    Article  Google Scholar 

  87. Neves ACC, Rohen LA, Mantovani DP et al (2019) Comparative mechanical properties between biocomposites of epoxy and polyester matrices reinforced by hemp fiber. J Mater Res Technol 9:1–9. https://doi.org/10.1016/j.jmrt.2019.11.056

    Article  CAS  Google Scholar 

  88. Gehring F, Bouchart V, Dinzart F, Chevrier P (2012) Microstructure, mechanical behaviour, damage mechanisms of polypropylene/short hemp fibre composites: experimental investigations. J Reinf Plast Compos 31(22):1576–1585. https://doi.org/10.1177/0731684412464089

    Article  CAS  Google Scholar 

  89. Mazzanti V, Pariante R, Bonanno A et al (2019) Reinforcing mechanisms of natural fibers in green composites: role of fibers morphology in a PLA/hemp model system. Compos Sci Technol 180:51–59. https://doi.org/10.1016/j.compscitech.2019.05.015

    Article  CAS  Google Scholar 

  90. Dayo AQ, Babar AA, Qin Q-r et al (2020) Effects of accelerated weathering on the mechanical properties of hemp fibre/polybenzoxazine based green composites. Compos A Appl Sci Manuf 128:105653. https://doi.org/10.1016/j.compositesa.2019.105653

    Article  CAS  Google Scholar 

  91. Conzatti L, Brunengo E, Utzeri R et al (2018) Macrocyclic oligomers as compatibilizing agent for hemp fibres/biodegradable polyester eco-composites. Polymer 146:396–406. https://doi.org/10.1016/j.polymer.2018.05.053

    Article  CAS  Google Scholar 

  92. Bledzki AK, Franciszczak P, Osman Z, Elbadawi M (2015) Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Ind Crop Prod 70:91–99. https://doi.org/10.1016/j.indcrop.2015.03.013

    Article  CAS  Google Scholar 

  93. Bledzki AK, Mamun AA, Faruk O (2007) Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites. Express Polym Lett 1:755–762. https://doi.org/10.3144/expresspolymlett.2007.104

    Article  CAS  Google Scholar 

  94. Iqbal M, Aminanda Y, Firsa T, Ali M (2020) Bending strength of polyester composites reinforced with stitched random orientation and plain weave abaca fiber. IOP Conf Ser Mater Sci Eng 739. https://doi.org/10.1088/1757-899X/739/1/012035

  95. Punyamurthy R, Sampathkumar D, Patel R (2015) Surface modification of abaca fiber by benzene diazonium chloride treatment and its influence on tensile properties of abaca fiber reinforced polypropylene composites. Ciên Tecnol Mater 26:142–149. https://doi.org/10.1016/j.ctmat.2015.03.003

    Article  Google Scholar 

  96. Rahman MR, Huque MM, Islam MN, Hasan M (2009) Mechanical properties of polypropylene composites reinforced with chemically treated abaca. Compos A Appl Sci Manuf 40:511–517. https://doi.org/10.1016/j.compositesa.2009.01.013

    Article  CAS  Google Scholar 

  97. Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos A Appl Sci Manuf 40:404–412. https://doi.org/10.1016/j.compositesa.2009.01.002

    Article  CAS  Google Scholar 

  98. Liu K, Zhang X, Takagi H et al (2014) Effect of chemical treatments on transverse thermal conductivity of unidirectional abaca fiber/epoxy composite. Compos A Appl Sci Manuf 66:227–236. https://doi.org/10.1016/j.compositesa.2014.07.018

    Article  CAS  Google Scholar 

  99. Saiah R, Sreekumar PA, Gopalakrishnan P et al (2009) Fabrication and characterization of 100% green composite: thermoplastic based on wheat flour reinforced by flax fibers. Polym Compos 30:1595–1600. https://doi.org/10.1002/pc.20732

    Article  CAS  Google Scholar 

  100. Andersons J, Joffe R (2011) Estimation of the tensile strength of an oriented flax fiber-reinforced polymer composite. Compos A Appl Sci Manuf 42:1229–1235. https://doi.org/10.1016/j.compositesa.2011.05.005

    Article  CAS  Google Scholar 

  101. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276–277:1–24

    Article  Google Scholar 

  102. Graupner N, Herrmann AS, Müssig J (2009) Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos A Appl Sci Manuf 40:810–821. https://doi.org/10.1016/j.compositesa.2009.04.003

    Article  CAS  Google Scholar 

  103. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  104. Muralidhar BA (2013) Study of flax hybrid preforms reinforced epoxy composites. Mater Des 52:835–840. https://doi.org/10.1016/j.matdes.2013.06.020

    Article  CAS  Google Scholar 

  105. Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I (2003) Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol 63:1247–1254. https://doi.org/10.1016/S0266-3538(03)00094-0

    Article  CAS  Google Scholar 

  106. Pantaloni D, Shah D, Baley C, Bourmaud A (2020) Monitoring of mechanical performances of flax non-woven biocomposites during a home compost degradation. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2020.109166

  107. Kamaraj M, Dodson EA, Datta S (2020) Effect of graphene on the properties of flax fabric reinforced epoxy composites. Adv Compos Mater:1–16. https://doi.org/10.1080/09243046.2019.1709679

  108. Vidyashri V, Lewis H, Narayanasamy P et al (2019) Preparation of chemically treated sugarcane bagasse fiber reinforced epoxy composites and their characterization. Cogent Eng 6. https://doi.org/10.1080/23311916.2019.1708644

  109. Abd El-Baky MA, Megahed M, El-Saqqa HH, Alshorbagy AE (2019) Mechanical properties evaluation of sugarcane bagasse-glass/polyester composites. J Nat Fibers:1–18. https://doi.org/10.1080/15440478.2019.1687069

  110. Bellal Hoque M, Sahadat Hossain M, Khan RA (2019) Study on tensile, bending and water uptake properties of sugarcane bagasse fiber reinforced polypropylene based composite. J Biomater 3:18. https://doi.org/10.11648/j.jb.20190301.13

    Article  Google Scholar 

  111. Dinesh, Palsule S (2019) Bagasse fiber reinforced functionalized ethylene propylene rubber composites by palsule process. J Nat Fibers:1–13. https://doi.org/10.1080/15440478.2019.1697984

  112. Balaji A, Karthikeyan B, Swaminathan J, Sundar Raj C (2019) Effect of filler content of chemically treated short bagasse fiber-reinforced cardanol polymer composites. J Nat Fibers 16:613–627. https://doi.org/10.1080/15440478.2018.1431829

    Article  CAS  Google Scholar 

  113. Singh T, Tejyan S, Patnaik A et al (2019) Fabrication of waste bagasse fiber-reinforced epoxy composites: study of physical, mechanical, and erosion properties. Polym Compos 40:3777–3786. https://doi.org/10.1002/pc.25239

    Article  CAS  Google Scholar 

  114. Noreen S, Bhatti HN, Iqbal M et al (2020) Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye. Int J Biol Macromol 147:439–452. https://doi.org/10.1016/j.ijbiomac.2019.12.257

    Article  CAS  Google Scholar 

  115. Elkington M, Bloom D, Ward C et al (2016) Hand layup: understanding the manual process. Adv Manuf Polym Compos Sci 1(3):138–151. https://doi.org/10.1080/20550340.2015.1114801

    Article  Google Scholar 

  116. Ye H, Yang X, Hong H (2007) Fabrication of metal matrix composites by metal injection molding – a review. J Mater Process Technol:12–24. https://doi.org/10.1016/j.jmatprotec.2007.10.066

  117. Kang MK, Lee WI (1999) Analysis of resin transfer/compression molding process. Polym Compos 20:293–304

    Article  CAS  Google Scholar 

  118. Del Borrello M, Mele M, Campana G, Secchi M (2020) Manufacturing and characterization of hemp-reinforced epoxy composites. Polym Compos:17–21. https://doi.org/10.1002/pc.25540

  119. Park CH, Lee WI, Yoo YE, Kim EG (2001) A study on fiber orientation in the compression molding of fiber reinforced polymer composite material. J Mater Process Technol 111:233–239. https://doi.org/10.1016/S0924-0136(01)00523-4

    Article  Google Scholar 

  120. Wang Y, Zhang C, Ren L et al (2013) Influences of rice hull in polyurethane foam on its sound absorption characteristics. Polym Compos 34:1847–1855. https://doi.org/10.1002/pc.22590

    Article  CAS  Google Scholar 

  121. Khan MN, Roy JK, Akter N et al (2012) Production and properties of short jute and short E-glass fiber reinforced polypropylene-based composites. Open J Compos Mater 2:40–47. https://doi.org/10.4236/ojcm.2012.22006

    Article  CAS  Google Scholar 

  122. Bhatti HN, Jabeen A, Iqbal M et al (2017) Adsorptive behavior of rice bran-based composites for malachite green dye: isotherm, kinetic and thermodynamic studies. J Mol Liq 237:322–333. https://doi.org/10.1016/j.molliq.2017.04.033

    Article  CAS  Google Scholar 

  123. Wirawan R, Sapuan SM, Yunus R, Abdan K (2011) Properties of sugarcane bagasse/poly(vinyl chloride) composites after various treatments. J Compos Mater 45:1667–1674. https://doi.org/10.1177/0021998310385030

    Article  CAS  Google Scholar 

  124. Khan MA, Masudul Hassan M, Drzal LT (2005) Effect of 2-hydroxyethyl methacrylate (HEMA) on the mechanical and thermal properties of jute-polycarbonate composite. Compos A Appl Sci Manuf 36:71–81. https://doi.org/10.1016/j.compositesa.2004.06.027

    Article  CAS  Google Scholar 

  125. Varma IK, Anantha Krishnan SR, Krishnamoorthy S (1989) Composites of glass/modified jute fabric and unsaturated polyester resin. Composites 20:383–388. https://doi.org/10.1016/0010-4361(89)90664-2

    Article  CAS  Google Scholar 

  126. Bino PRD, Stanly JRB, Shukla M (2017) Analysis of mechanical properties of hybrid bamboo/jute fibers reinforced & vinyl ester composite material. Int J Mech Eng Technol 8:318–324

    Google Scholar 

  127. Khan MA, Ganster J, Fink HP (2009) Hybrid composites of jute and man-made cellulose fibers with polypropylene by injection moulding. Compos A Appl Sci Manuf 40:846–851. https://doi.org/10.1016/j.compositesa.2009.04.015

    Article  CAS  Google Scholar 

  128. Khan GMA, Terano M, Gafur MA, Alam MS (2016) Studies on the mechanical properties of woven jute fabric reinforced poly(L-lactic acid) composites. J King Saud Univ Eng Sci 28:69–74. https://doi.org/10.1016/j.jksues.2013.12.002

    Article  Google Scholar 

  129. Islam R, Islam T, Nigar F et al (2011) Fabrication and mechanical characterization of jute fabrics: reinforced polyvinyl chloride/polypropylene hybrid composites. Int J Polym Mater Polym Biomater 60:576–590. https://doi.org/10.1080/00914037.2010.531822

    Article  CAS  Google Scholar 

  130. Paiva Júnior CZ, De Carvalho LH, Fonseca VM et al (2004) Analysis of the tensile strength of polyester/hybrid ramie-cotton fabric composites. Polym Test 23:131–135. https://doi.org/10.1016/S0142-9418(03)00071-0

    Article  CAS  Google Scholar 

  131. Yousif BF (2009) Frictional and wear performance of polyester composites based on coir fibres. Proc Inst Mech Eng J J Eng Tribol 223:51–59. https://doi.org/10.1243/13506501JET455

    Article  CAS  Google Scholar 

  132. Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos Part B Eng 42:1648–1656. https://doi.org/10.1016/j.compositesb.2011.04.001

    Article  CAS  Google Scholar 

  133. Gelfuso MV, Da Silva PVG, Thomazini D (2011) Polypropylene matrix composites reinforced with coconut fibers. Mater Res 14:360–365. https://doi.org/10.1590/S1516-14392011005000056

    Article  CAS  Google Scholar 

  134. Neoh KW, Tshai KY, Khiew PS, Chia CH (2012) Micro palm and kenaf fibers reinforced PLA composite: effect of volume fraction on tensile strength. Appl Mech Mater 145:1–5. https://doi.org/10.4028/www.scientific.net/AMM.145.1

    Article  CAS  Google Scholar 

  135. Shibata M, Takachiyo KI, Ozawa K et al (2002) Biodegradable polyester composites reinforced with short abaca fiber. J Appl Polym Sci 85:129–138. https://doi.org/10.1002/app.10665

    Article  CAS  Google Scholar 

  136. Balachandra Shetty P, Mukunda P, Professor A (2013) Mechanical properties of short banana fiber reinforced natural rubber composites. Int J Innov Res Sci Eng Technol 2:1652–1655

    Google Scholar 

  137. Plackett D, Andersen TL, Pedersen WB, Nielsen L (2003) Biodegradable composites based on L-polylactide and jute fibres. Compos Sci Technol 63:1287–1296. https://doi.org/10.1016/S0266-3538(03)00100-3

    Article  CAS  Google Scholar 

  138. Vilaseca F, Mendez JA, Pèlach A et al (2007) Composite materials derived from biodegradable starch polymer and jute strands. Process Biochem 42:329–334. https://doi.org/10.1016/j.procbio.2006.09.004

    Article  CAS  Google Scholar 

  139. Mwaikambo LY, Martuscelli E, Avella M (2000) Kapok/cotton fabric-polypropylene composites. Polym Test 19:905–918. https://doi.org/10.1016/S0142-9418(99)00061-6

    Article  CAS  Google Scholar 

  140. Qi C, Guo K, Liu Y (2012) Preparation and properties of cotton stalk bundles and high-density polyethylene composites using hot-press molding. J Reinf Plast Compos 31:1017–1024. https://doi.org/10.1177/0731684411435726

    Article  CAS  Google Scholar 

  141. Battegazzore D, Frache A, Abt T, Maspoch ML (2018) Epoxy coupling agent for PLA and PHB copolymer-based cotton fabric bio-composites. Compos Part B Eng 148:188–197

    Article  CAS  Google Scholar 

  142. Andersons J, Spa E (2016) Polyvinyl alcohol-modified Pithecellobium clypearia Benth herbal residue fiber polypropylene composites. Polym Compos 37:915–924. https://doi.org/10.1002/pc.23250

    Article  CAS  Google Scholar 

  143. Kim NK, Mao N, Lin R et al (2020) Flame retardant property of flax fabrics coated by extracellular polymeric substances recovered from both activated sludge and aerobic granular sludge. Water Res 170:115344. https://doi.org/10.1016/j.watres.2019.115344

    Article  CAS  Google Scholar 

  144. Baiardo M, Zini E, Scandola M (2004) Flax fibre-polyester composites. Compos A Appl Sci Manuf 35:703–710. https://doi.org/10.1016/j.compositesa.2004.02.004

    Article  CAS  Google Scholar 

  145. Barkoula NM, Garkhail SK, Peijs T (2010) Biodegradable composites based on flax/polyhydroxybutyrate and its copolymer with hydroxyvalerate. Ind Crop Prod 31:34–42. https://doi.org/10.1016/j.indcrop.2009.08.005

    Article  CAS  Google Scholar 

  146. Mak K, Fam A (2019) Freeze-thaw cycling effect on tensile properties of unidirectional flax fiber reinforced polymers. Compos Part B Eng 174:107645. https://doi.org/10.1016/j.compositesb.2019.106960

    Article  CAS  Google Scholar 

  147. Cuinat-Guerraz N, Dumont MJ, Hubert P (2016) Environmental resistance of flax/bio-based epoxy and flax/polyurethane composites manufactured by resin transfer moulding. Compos A Appl Sci Manuf 88:140–147. https://doi.org/10.1016/j.compositesa.2016.05.018

    Article  CAS  Google Scholar 

  148. Bax B, Müssig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68:1601–1607. https://doi.org/10.1016/j.compscitech.2008.01.004

    Article  CAS  Google Scholar 

  149. Heijenrath R, Peijs T (1996) Natural-fibre-mat-reinforced thermoplastic composites based on flax fibres and polypropylene. Adv Compos Lett 5:81–85. https://doi.org/10.1177/096369359600500303

    Article  Google Scholar 

  150. Cao X, Chen Y, Chang PR et al (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2:502–510. https://doi.org/10.3144/expresspolymlett.2008.60

    Article  CAS  Google Scholar 

  151. Fages E, Girone S, Garcı D, Balart R (2016) Polyvinyl alcohol-modified Pithecellobium clypearia Benth herbal residue fiber polypropylene composites. Polym Compos 37:915–924. https://doi.org/10.1002/pc.23250

    Article  CAS  Google Scholar 

  152. Kumar Sinha A, Narang HK, Bhattacharya S (2018) Evaluation of bending strength of abaca reinforced polymer composites. Mater Today Proc 5:7284–7288. https://doi.org/10.1016/j.matpr.2017.11.396

    Article  CAS  Google Scholar 

  153. Liu K, Takagi H, Osugi R, Yang Z (2012) Effect of physicochemical structure of natural fiber on transverse thermal conductivity of unidirectional abaca/bamboo fiber composites. Compos A Appl Sci Manuf 43:1234–1241. https://doi.org/10.1016/j.compositesa.2012.02.020

    Article  CAS  Google Scholar 

  154. Punyamurthy R, Sampathkumar D, Ranganagowda RP et al (2014) Surface modification of abaca fiber by benzene diazonium chloride treatment and its influence on tensile properties of abaca fiber reinforced polypropylene composites. Cien Tecnol Mater 26:142–149. https://doi.org/10.1016/j.ctmat.2015.03.003

    Article  Google Scholar 

  155. Punyamurthy R, Sampathkumar D, Ranganagowda RPG et al (2017) Mechanical properties of abaca fiber reinforced polypropylene composites: effect of chemical treatment by benzenediazonium chloride. J King Saud Univ Eng Sci 29:289–294. https://doi.org/10.1016/j.jksues.2015.10.004

    Article  Google Scholar 

  156. Vijaya Ramnath B, Junaid Kokan S, Niranjan Raja R et al (2013) Evaluation of mechanical properties of abaca-jute-glass fibre reinforced epoxy composite. Mater Des 51:357–366. https://doi.org/10.1016/j.matdes.2013.03.102

    Article  CAS  Google Scholar 

  157. Vilaseca F, Valadez-Gonzalez A, Herrera-Franco PJ et al (2010) Biocomposites from abaca strands and polypropylene. Part I: evaluation of the tensile properties. Bioresour Technol 101:387–395. https://doi.org/10.1016/j.biortech.2009.07.066

    Article  CAS  Google Scholar 

  158. Panaitescu DM, Vuluga Z, Sanporean CG et al (2019) High flow polypropylene/SEBS composites reinforced with differently treated hemp fibers for injection molded parts. Compos Part B Eng 174:107062. https://doi.org/10.1016/j.compositesb.2019.107062

    Article  CAS  Google Scholar 

  159. Madhusudhana HK, Desai B, Venkatesha CS (2018) Experimental investigation on parameter effects on fracture toughness of hemp fiber reinforced polymer composites. Mater Today Proc 5:20002–20012. https://doi.org/10.1016/j.matpr.2018.06.367

    Article  CAS  Google Scholar 

  160. Gohil P, Patel K, Chaudhary V (2019) Natural fiber-reinforced polymer composites: A comprehensive study on machining characteristics of hemp fiberreinforced composites. Biomass Biopolym Mater Bioenergy 25–50

    Google Scholar 

  161. Müssig J, Haag K, Musio S et al (2019) Biobased “mid-performance” composites using losses from the hackling process of long hemp – a feasibility study as part of the development of a biorefinery concept. Ind Crop Prod. https://doi.org/10.1016/j.indcrop.2019.111938

  162. Elkhaoulani A, Arrakhiz FZ, Benmoussa K et al (2013) Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene. Mater Des 49:203–208. https://doi.org/10.1016/j.matdes.2013.01.063

    Article  CAS  Google Scholar 

  163. Sharma M, Kumar M, Deepak D (2019) Effect of varying reinforcement content on the mechanical properties of neem-recycled hdpe composites. Int J Mech Prod Eng Res Dev 9:966–975. https://doi.org/10.1016/j.matpr.2019.07.552

    Article  CAS  Google Scholar 

  164. Väisänen T, Batello P, Lappalainen R, Tomppo L (2018) Modification of hemp fibers (Cannabis sativa L.) for composite applications. Ind Crop Prod 111:422–429. https://doi.org/10.1016/j.indcrop.2017.10.049

    Article  CAS  Google Scholar 

  165. Prachayawarakorn J, Chaiwatyothin S, Mueangta S, Hanchana A (2013) Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Mater Des 47:309–315. https://doi.org/10.1016/j.matdes.2012.12.012

    Article  CAS  Google Scholar 

  166. Sahu P, Gupta MK (2018) PLA coated sisal fibre reinforced polyester composite: static and dynamic mechanical properties. Mater Today Proc 5:19799–19807. https://doi.org/10.1016/j.matpr.2018.06.343

    Article  CAS  Google Scholar 

  167. Pappu A, Pickering KL, Thakur VK (2019) Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding. Ind Crop Prod 137:260–269. https://doi.org/10.1016/j.indcrop.2019.05.040

    Article  CAS  Google Scholar 

  168. Ngaowthong C, Borůvka M, Běhálek L et al (2019) Recycling of sisal fiber reinforced polypropylene and polylactic acid composites: thermo-mechanical properties, morphology, and water absorption behavior. Waste Manag 97:71–81. https://doi.org/10.1016/j.wasman.2019.07.038

    Article  CAS  Google Scholar 

  169. Thiagamani SMK, Krishnasamy S, Muthukumar C et al (2019) Investigation into mechanical, absorption and swelling behaviour of hemp/sisal fibre reinforced bioepoxy hybrid composites: effects of stacking sequences. Int J Biol Macromol 140:637–646. https://doi.org/10.1016/j.ijbiomac.2019.08.166

    Article  CAS  Google Scholar 

  170. Kumar S, Kumar Y, Gangil B, Kumar Patel V (2017) Effects of agro-waste and bio-particulate fillers on mechanical and wear properties of sisal fibre based polymer composites. Mater Today Proc 4:10144–10147. https://doi.org/10.1016/j.matpr.2017.06.337

    Article  Google Scholar 

  171. Yorseng K, Rangappa SM, Pulikkalparambil H et al (2020) Accelerated weathering studies of kenaf/sisal fiber fabric reinforced fully biobased hybrid bioepoxy composites for semi-structural applications: morphology, thermo-mechanical, water absorption behavior and surface hydrophobicity. Constr Build Mater 235:117464. https://doi.org/10.1016/j.conbuildmat.2019.117464

    Article  CAS  Google Scholar 

  172. O’Donnell A, Dweib MA, Wool RP (2004) Natural fiber composites with plant oil-based resin. Compos Sci Technol 64:1135–1145. https://doi.org/10.1016/j.compscitech.2003.09.024

    Article  CAS  Google Scholar 

  173. Dicker MPM, Duckworth PF, Baker AB et al (2014) Green composites: a review of material attributes and complementary applications. Compos A Appl Sci Manuf 56:280–289. https://doi.org/10.1016/j.compositesa.2013.10.014

    Article  CAS  Google Scholar 

  174. Yuan Y, Niu K, Zhang Z (2020) Compressive damage mode manipulation of fiber-reinforced polymer composites. Eng Fract Mech 223:106799. https://doi.org/10.1016/j.engfracmech.2019.106799

    Article  Google Scholar 

  175. Chapple S, Anandjiwala R (2010) Flammability of natural fiber-reinforced composites and strategies for fire retardancy: a review. J Thermoplast Compos Mater 23:871–893. https://doi.org/10.1177/0892705709356338

    Article  CAS  Google Scholar 

  176. Favoino E, Hogg D (2008) The potential role of compost in reducing greenhouse gases. Waste Manag Res 26:61–69. https://doi.org/10.1177/0734242X08088584

    Article  CAS  Google Scholar 

  177. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf 35:371–376. https://doi.org/10.1016/j.compositesa.2003.09.016

    Article  CAS  Google Scholar 

  178. Pervaiz M, Sain MM (2003) Carbon storage potential in natural fiber composites. Resour Conserv Recycl 39:325–340. https://doi.org/10.1016/S0921-3449(02)00173-8

    Article  Google Scholar 

Download references

Acknowledgments

The authors would also like to acknowledge the support provided under the DST-FIST Grant No. SR/FST/PS-I/2019/68 of Government of India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yadav, P., Srivastava, C.M., Vaya, D. (2020). Plant Fibers-Based Sustainable Biocomposites. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_182-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_182-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation