Compliant Manipulators

  • Living reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

Compliant manipulators are advanced robotic systems articulated by the flexure joints to deliver highly repeatable motion. Using the advantage of elastic deflection, these flexure joints overcome the limitations of conventional bearing-based joints such as dry friction, backlash, and wear and tear. Together with high-resolution positioning actuators and encoders, the compliant manipulators are suitable ideal candidates for micro-/nanoscale positioning tasks. This chapter presents the relevant knowledge of several fundamental topics associated with this advanced technology. After reviewing its evolution and applications, the principal of mechanics is used to explain the limitations of these manipulators. Subsequent topic covers various theoretical modeling approaches that are generally used to predict the deflection stiffness of flexure joints and stiffness characteristics of compliant manipulators. Next, various fundamental design concepts for synthesizing the compliant mechanism will be introduced and several examples are used to demonstrate the effectiveness of these concepts. The topic on actuation, sensing, and control summarizes the types of high-resolution actuators and sensors which the compliant manipulators use to achieve high-precision positioning performance. Performance trade-offs between various actuators and among different sensors are discussed in detail. With this relevant knowledge, this chapter serves as a guide and reference for designing, analyzing, and develo** a compliant manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Bacher JP (2003) Conception de robots de très haute precision á articulation flexibles: interaction dynamique-commande. PhD thesis, Ecole Polytechnique Fdrale de Lausanne (EPFL) (No 2907)

    Google Scholar 

  • Becker P, Seyfried P, Siegert H (1987) Rev Sci Instrum 58(2):207

    Article  Google Scholar 

  • BEI Kimco Magnetics (2014) Linear voice coil actuators. Online: BEI Kimco Magnetics website, http://www.beikimco.com/

  • Bellouard Y, Clavel R (2004) Mater Sci Eng A 378, pp 210–215

    Google Scholar 

  • Bendsoe MP (1989) Struct Optim 1, pp 193–202

    Google Scholar 

  • Bendsoe MP, Kikuchi N (1988) Comput Methods Appl Mech Eng 71, pp 197–224

    Google Scholar 

  • Bendsoe MP, Sigmund O (1999) Arch Appl Mech 69, pp 635–654

    Google Scholar 

  • Bendsoe MP, Aharon BT, Jochem Z (1994) Struct Optim 7(3):141

    Article  Google Scholar 

  • Blanding DL (1992) Principles of exact constraint mechanical design. Eastman Kodak, Rochester

    Google Scholar 

  • Boone BG, Bokulic RS, Andrewsa GB, McNutt JR, Dagalakisb N (2002) Optical and microwave communications system conceptual design for a realistic interstellar explorer. In: SPIE international society of optical engineering, Jun, Bellingham, Whatcom County, USA, pp 225–236

    Google Scholar 

  • Borovic B, Lewis FL, Liu AQ, Kolesar ES, Popa D (2006) J Micromech Microeng 16, pp 1233–1241

    Google Scholar 

  • Brennen RA, Lim MG, Pisano AP, Chou AT (1990) Large displacement linear actuator. In: 4th Technical Digest., IEEE Solid-State Sensor and Actuator Workshop, 4–7 Jun, Hilton Head Island, South Carolina, USA, pp 135–139

    Google Scholar 

  • Byrd PF, Fredman MD (1954) Handbook of elliptic integrals for engineers and physicists. Springer, Berlin

    Book  MATH  Google Scholar 

  • Canfield SL, Beard JW, Lobontiu N, O’Malley E, Samuelson M, Paine J (2002) Int J Robot Autom 17:63

    Google Scholar 

  • Chapman C, Jakiela M (1996) ASME J Mech Des 118(1):89

    Article  Google Scholar 

  • Chen SC, Culpepper ML (2006) Precis Eng 30:314

    Article  Google Scholar 

  • Chen KS, Trumper DL, Smith ST (2002) Precis Eng 26:355

    Article  MATH  Google Scholar 

  • Chiou JC, Lin YJ (2005) J Micromech Microeng 15, pp 1641–1648

    Google Scholar 

  • Chu DN, **e YM, Hira A, Steven GP (1997) Finite Elem Anal Des 24, pp 191–212

    Google Scholar 

  • Comtois JH, Bright VM (1996) Surface micromachined polysilicon thermal actuator arrays and applications. In: Sold-state sensor and actuator workshop, 2–6 Jun, Hilton Head, South Carolina, USA, pp 242–253

    Google Scholar 

  • Comtois JH, Bright VM (1997) Sensors and Actuators A 58

    Google Scholar 

  • Culpepper ML, Anderson G (2004) Precis Eng 28:469

    Article  Google Scholar 

  • Deslattes RD (1969) Appl Phys Lett 15(11):386

    Article  Google Scholar 

  • Dong L, Arai F, Fukuda T (2000) 3D Nanorobotic Manipulation of Nano-order Objects inside SEM. In: 2000 International symposium on micromechatronics and human science, 22–25 Oct, Nagoya Congress Center and Nagoya Municipal Industrial Research Institute, Japan, pp 151–156

    Google Scholar 

  • Dowling NE (1993) Mechanical behavior of materials. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Fite K, Goldfarb M (1999) In: 1999 I.E. international conference on robotics and automation, Detroit, pp 2122–2127

    Google Scholar 

  • Forrest PG (1962) Fatigue of metals. Pergamon Press, Elmsford

    Google Scholar 

  • Frisch FR (1962) Flexible bars. Butterworth, Washington, DC

    MATH  Google Scholar 

  • Fukada S, Nishimura K (2007) Int J Precis Eng Manuf 8:49

    Google Scholar 

  • Gao P, Swei SM, Yuan Z (1999) Nanotechnology 10:394

    Article  Google Scholar 

  • H2W Technologies (2014) Voice coil linear actuators. Online: H2W Technologies website, http://www.h2wtech.com/

  • Haberland R (1978) In: Symposium on gyroscope technology, Deutsche Gesellschaft fuer Ortung und Navigation, Duesseldorf/Bochum, pp 18–19

    Google Scholar 

  • Hale LC (1999) Principles and techniques for designing precision machines. PhD thesis, Massachusetts Institute of Technology (MIT)

    Google Scholar 

  • Han CS, Hudgens JC, Tesar D, Traver A (1991) In: 1991 IEEE/RSJ international conference on intelligent robots and systems, Osaka, pp 1153–1162

    Google Scholar 

  • Helmer P (2006) Conception systmatique de structures cinmatiques orthogonales pour la microrobotique. PhD thesis, Ecole Polytechnique Fdrale de Lausanne (EPFL) (No 3365)

    Google Scholar 

  • Heidenhain (2014) Optical sensor. Online: Heidenhain Corporation website, http://www.heidenhain.com/

  • Henein S (2000) Conception des structures articules guidages flexibles de haute prcision. PhD thesis, Ecole Polytechnique Fdrale de Lausanne (EPFL) (No 2194)

    Google Scholar 

  • Henein S (2006) Flexure-based mechanism for high precision. In: Technical tutorial notes of 6th International conference of the European society for precision engineering & nanotechnology, May, Vienna, Austria, pp 32–37

    Google Scholar 

  • HEPHAIST S (2014) Spherical rolling joint SRJ series. Online: Hephaist Sekio website, http://www.hephaist.co.jp/e/

  • Her I, Chang JC (1994) In: 23rd ASME biennial mechanisms conference on machine elements and machine dynamics, pp 517–525

    Google Scholar 

  • Hesselbach J, Pittschellis R, Hornbogen E, Mertmann M (1997) Shape memory alloys for use in miniature grippers. In: 2nd International Conference on Shape Memory and Superelastic Technologies, 2–6 Mar, Pacific Grove, California, USA, pp 251–256

    Google Scholar 

  • Ho HL, Yang GL, Lin W (2004) In: 2003/2004 international conference on precision engineering, Singapore, pp 133–140

    Google Scholar 

  • Howell LL (2001) Compliant mechanism. Wiley, New York

    Google Scholar 

  • Howell LL, Midha A (1994) ASME J Mech Des 116:280

    Article  Google Scholar 

  • Howell LL, Midha A, Norton TW (1996) ASME J Mech Des 118:126

    Article  Google Scholar 

  • Hudgens JC, Tesar DA (1988) In: 20th biennial ASME mechanisms conference, Kissimmee, pp 29–37

    Google Scholar 

  • Hung ES, Senturia SD (1999) J Micromech Syst 8, pp 497–505

    Google Scholar 

  • Jones RV (1951) J Sci Instrum 28(2):38

    Article  Google Scholar 

  • Jones RV (1952) J Sci Instrum 29:345

    Article  Google Scholar 

  • Jones RV (1955) J Sci Instrum 33(6):245

    Article  Google Scholar 

  • Jones RV (1956) J Sci Instrum 33(7):279

    Article  Google Scholar 

  • Jones RV (1962) J Sci Instrum 39:193

    Article  Google Scholar 

  • Jones RV (1988) Instruments and experiences; papers on measurement and instrument design. Wiley, Chichester/New York

    Google Scholar 

  • Juvinall RC (1967) Stress, strain, and strength. McGraw-Hill, New York

    Google Scholar 

  • Jywe WY, Jeng YR, Liu CH, Teng YF, Wu CH, Wang HS, Chen YJ (2008) Precis Eng 32(4):239

    Article  Google Scholar 

  • Kimball LW, Tsai DD, Maloney J (2000) In: 2000 ASME design engineering technical conferences, Baltimore, pp DETC00/MECH-14,116

    Google Scholar 

  • Lee CW, Kim SW (1997) Precis Eng 21:113

    Article  MATH  Google Scholar 

  • Lion Precision (2014) Capacitive sensor. Online: Lion Precision website, http://www.lionprecision.com/

  • Liu L, Tan KK, Chen S, Teo CS, Lee TH (2013) IEEE Trans Ind Inform 9(2):859

    Article  Google Scholar 

  • Lobontiu N (1962) Compliant mechanisms: design of flexure hinges. CRC Press, Boca Raton

    Google Scholar 

  • Lobontiu N, Paine JSN, O’Malley E, Samuelson M (2002) Precis Eng 26:183

    Article  Google Scholar 

  • Lobontiu N, Garcia E, Hardau M, Bal N (2004) Rev Sci Instrum 75:4896

    Article  Google Scholar 

  • Lum GZ, Teo TJ, Yang GL, Yeo SH, Sitti M (2013) In: IEEE/ASME international conference on advanced intelligent mechatronics, Wollongong, vol 1, pp 247–254

    Google Scholar 

  • Mamin HJ, Abraham DW, Ganz E, Clark J (1985) Rev Sci Instrum 56:2168

    Article  Google Scholar 

  • Marin J (1962) Mechanical behavior of engineering materials. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Mclnroy JE, Hamann JC (2000) IEEE Trans Robot Autom 16:372

    Article  Google Scholar 

  • Mclnroy JE, O’Brien JF, Neat GW (1999) IEEE/ASME Trans Mech 4:91

    Article  Google Scholar 

  • Merlet JR (2000) Parallel robot. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Motsinger RN (1964) In: Stein PK (ed) Measurement engineering. Stein Engineering Services, Phoenix, chap. 11

    Google Scholar 

  • Mukhopadhyay D, Dong J, Pengwang E, Ferreira P (2008) A SOI-MEMS-based 3-DOF planar parallel-kinematics nanopositioning stage. Sensors and Actuators A, 147, pp 340–351

    Article  Google Scholar 

  • Nishimura K (1991) Rev Sci Instrum 62(8):2004

    Article  Google Scholar 

  • Norton R (2000) Machine design, an integrated approach. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Oiwa T, Hirano M (1999) Jpn Soc Precis Eng 65:1425

    Article  Google Scholar 

  • Ouyang PR, Tjiptoprodjo RC, Zhang WJ, Yang GS (2008) Int J Adv Manuf Technol 38(5–6):463

    Article  Google Scholar 

  • Paros JM, Weisbord L (1965) How to design flexure hinges, Mach Des 37:151–156

    Google Scholar 

  • Pham HH, Chen IM (2005) Precis Eng 29(4):467

    Article  Google Scholar 

  • Physik Instrumente GmbH, (2014) PICMA stack multilayer piezo actuators. Online: Physik Instrumente website, http://www.piceramic.com/index.php

  • Portman VT, Sandler BZ, Zahavi E (2000) IEEE Trans Robot Autom 16:629

    Article  Google Scholar 

  • Qiu J, Lang JH, Slocum AH, Strumpler R (2003) A high-current electrothermal bistable MEMS relay. In: IEEE 16th annual international conference on micro electro mechanical systems, 19–23 Jan, Kyoto, Japan, pp 64–67

    Google Scholar 

  • Reynaerts D, Peirs J, Brussel HV (1995) J Micromech Microeng 5, pp 150–152

    Google Scholar 

  • Rosa MA, Dimitrijev S, Harrison HB (1998) Electron Lett 34, pp 1787–1788

    Google Scholar 

  • Rozvany GIN (1976) Optimal design of flexural systems. Pergamon, Oxford

    Google Scholar 

  • Rozvany GIN (1995) Structural design via optimality criteria. Kluwer, Dordrecht

    Google Scholar 

  • Ryu JW, Gweon DG, Moon KS (1997) Precis Eng 21:18

    Article  Google Scholar 

  • Seugling RM, LeBrun T, Smith ST, Howard LP (2002) Rev Sci Instrum 73:2462

    Article  Google Scholar 

  • Shigley JE, Mischke CR (2001) Mechanical engineering design, 6th edn. McGraw-Hill, New York

    Google Scholar 

  • Shigley JE, Mitchell LD (1983) Mechanical engineering design, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • SIOS (2014) Laser interferometry sensor. Online: SIOS GmbH website, http://www.sios.de/englisch/vertret_e.htm

  • Slocum AH (1992) Precision machine design. Prentice Hall, Englewood Cliff

    Google Scholar 

  • Smith ST (2000) Flexure: elements of elastic mechanisms. Gordon and Breach Science Publishers, London

    Google Scholar 

  • Smith ST, Chetwynd DG, Bowen DK (1987) J Phys E Sci Instrum 20:977

    Article  Google Scholar 

  • Speich J, Goldfarb M (2000) Robotica 18:95

    Article  Google Scholar 

  • Stroman RO (2006) Actuator trade-off analysis for darpa/boss prototype. Memorandum report, Naval Research Lab, Chemical Dynamics and Diagnostics Brach, Washington, DC

    Google Scholar 

  • Sun Y, Piyabongkarn D, Sezen A, Nelson BJ, Rajamani R, Schoch R, Potasek DP (2002) In: 2002 IEEE/RSJ international conference on intelligence robots and systems, EPFL, Lausanne, pp 1796–1801

    Google Scholar 

  • Tai K, Akhtar S (2005) Struct Multidiscip Optim 30(2):113

    Article  Google Scholar 

  • Tan KK, Lee TH, Zhou HX (2001) IEEE/ASME Trans Mechatron 6:428

    Article  Google Scholar 

  • Tang WC, Chong TU, Nguyen H, Howe RT (1989) Sens Actuat 20, pp 25–32

    Google Scholar 

  • Teo TJ, Chen IM, Yang GL, Lin W (2008) Nanotechnology 19:315501

    Article  Google Scholar 

  • Teo TJ, Yang GL, Lin W (2010) A 3-DOF spatial-motion flexure-based parallel nano-manipulator with large workspace and high payload for UV nanoimprint lithography application. In: 10th international conference of European society for precision engineering and nanotechnology, May, Delft, Netherland, pp 360–363

    Google Scholar 

  • Teo TJ, Chen IM, Yang GL, Lin W (2010b) Precis Eng 34(3):607

    Article  Google Scholar 

  • Teo TJ, Lum GZ, Yang GL, Yeo SH, Sitti M (2013) In: 13th international conference of European society for precision engineering and nanotechnology, vol 1, Berlin

    Google Scholar 

  • Toshiyoshi H, Fujita H (1996) J Micromech Syst 5(4):231

    Article  Google Scholar 

  • Tsai LW (1999) Robot analysis: the mechanics of serial and parallel manipulators. Wiley, New York

    Google Scholar 

  • Tseytlin YM (2002) Rev Sci Instrum 73:3363

    Article  Google Scholar 

  • Tsou C, Lin WT, Fan CC, Chou BCS (2005) J Micromech Microeng 15, pp 855–860

    Google Scholar 

  • Tuttle SB (1967) Mechanisms for engineering design. Wiley, New York, chap. 8

    Google Scholar 

  • Wang SC, Hikita HKH, Zhao YS, Huang Z, Ifukube T (2003a) Mech Mach Theory 38:439

    Article  MATH  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) Comput Methods Appl Mech Eng 192, pp 227–246

    Google Scholar 

  • **e YM, Steven GP (1993) Comput Struct 49, pp 885–896

    Google Scholar 

  • Xu W, King T (1996) Precis Eng 19:4

    Article  Google Scholar 

  • Yang GL, Teo TJ, Lin W, Kiew CM, Ho HL (2008) A flexure-based planar motion parallel nanopositioner with partially decoupled kinematic architecture. In: 8th international conference of European society for precision engineering and nanotechnology, May, Zurich, Switzerland, pp 160–165

    Google Scholar 

  • Yang GL, Teo TJ, Chen IM, Lin W (2011) In: 2011 I.E. international conference on robotics and automation, Shanghai, pp 2751–2756

    Google Scholar 

  • Yi BJ, Chung GB, Na HY, Kim WK, Suh IH (2003) IEEE Trans Robot Autom 19:604–612

    Article  Google Scholar 

  • Yong YK, Lu TF (2009) Mech Mach Theory 44:1156

    Article  MATH  Google Scholar 

  • Yong YK, Lu TF, Handley DC (2008) Precis Eng 32(2):63

    Article  Google Scholar 

  • Zhang B, Zhu Z (1997) IEEE/ASME Trans Mechatron 2:22

    Article  Google Scholar 

  • Zhu Y, Corigliano A, Espinosa HD (2006) J Micromech Microeng 16, pp 242–253

    Google Scholar 

  • Zuo L, Landsiedel N, Prakash M, Kartik M (2003) Design of six-axis nano-manipulator based on compliant mechanism. Technical report, Massachusetts Institute of Technology (MIT)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tat Joo Teo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Teo, T.J., Yang, G., Chen, IM. (2014). Compliant Manipulators. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4976-7_102-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4976-7_102-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-4976-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Navigation