Oxygen Evolution Reaction

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry

Introduction

The oxygen evolution reaction (OER) is an enabler of several technological applications. In energy storage, these include regenerative fuel cells (see entry Fuel Cells, Principles and Thermodynamics), electrolyzers, metal-air batteries, and solar-driven water-splitting devices. Traditional metal refinery techniques such as electro-deposition (see entry Electrodeposition of Electronic Materials for Applications in Macroelectronic- and Nanotechnology-Based Devices), electro-synthesis, and electro-refining also generally involve the OER on the anode. In addition, the OER is central to natural photosynthesis in plants, algae, and cyanobacteria as well as artificial photosynthesis. Due to the ubiquitous nature of the OER, numerous efforts from chemists, physicists, biologists, and engineers have been made to understand the OER mechanism, as mastery of it holds the key to unlocking fundamental mechanism of oxygen chemistry and strategy to develop more cost-effective OER-based...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 999.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 534.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damjanovic A, Dey A, Bockris JOM (1966) Kinetics of oxygen evolution and dissolution on platinum electrodes. Electrochim Acta 11:791–814

    CAS  Google Scholar 

  2. Miles MH, Klaus EA, Gunn BP, Locker JR, Serafin WE, Srinivasan S (1978) The oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80 °C in acid solutions. Electrochim Acta 23:521–526

    CAS  Google Scholar 

  3. Bockris JO, Huq AKMS (1956) The mechanism of the electrolytic evolution of oxygen on platinum. Proc R Soc London Ser-A 237:277–296

    CAS  Google Scholar 

  4. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607:83–89

    CAS  Google Scholar 

  5. Trasatti S (1984) Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim Acta 29:1503–1512

    CAS  Google Scholar 

  6. Tseung ACC, Jasem S (1977) Oxygen evolution on semiconducting oxides. Electrochim Acta 22:31–34

    CAS  Google Scholar 

  7. Davidson CR, Kissel G, Srinivasan S (1982) Electrode-kinetics of the oxygen evolution reaction at NiCo2O4 from 30-percent KOH – dependence on temperature. J Electroanal Chem 132:129–135

    CAS  Google Scholar 

  8. Singh RN, Hamdani M, Koenig JF, Poillerat G, Gautier JL, Chartier P (1990) Thin films of Co3O4 and NiCo2O4 obtained by the method of chemical spray pyrolysis for electrocatalysis III. The electrocatalysis of oxygen evolution. J Appl Electrochem 20:442–446

    CAS  Google Scholar 

  9. Bockris JO, Otagawa T (1984) The electrocatalysis of oxygen evolution on perovskites. J Electrochem Soc 131:290–302

    CAS  Google Scholar 

  10. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    CAS  Google Scholar 

  11. Jain AN, Tiwari SK, Singh RN, Chartier P (1995) Low-temperature synthesis of perovskite-type oxides of Lanthanum and Cobalt and their electrocatalytic properties for oxygen evolution in alkaline-solutions. J Chem Soc Faraday Trans 91:1871–1875

    CAS  Google Scholar 

  12. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075

    CAS  Google Scholar 

  13. Zaharieva I, Chernev P, Risch M, Klingan K, Kohlhoff M, Fischer A, Dau H (2012) Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide. Energ Environ Sci 5:7081–7089

    CAS  Google Scholar 

  14. Dinca M, Surendranath Y, Nocera DG (2010) Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc Natl Acad Sci U S A 107:10337–10341

    CAS  Google Scholar 

  15. Hocking RK, Brimblecombe R, Chang LY, Singh A, Cheah MH, Glover C, Casey WH, Spiccia L (2011) Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat Chem 3:461–466

    CAS  Google Scholar 

  16. Trasatti S (1980) Electrocatalysis by oxides – Attempt at a unifying approach. J Electroanal Chem 111:125–131

    CAS  Google Scholar 

  17. Nakagawa T, Beasley CA, Murray RW (2009) Efficient electro-oxidation of water near its reversible potential by a mesoporous IrOx nanoparticle film. J Phys Chem C 113:12958–12961

    CAS  Google Scholar 

  18. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) Synthesis and activities of Rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3:399–404

    CAS  Google Scholar 

  19. Choi P, Bessarabov DG, Datta R (2004) A simple model for solid polymer electrolyte (SPE) water electrolysis. Solid State Ion 175:535–539

    CAS  Google Scholar 

  20. Marshall A, Borresen B, Hagen G, Tsypkin M, Tunold R (2007) Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers - Reduced energy consumption by improved electrocatalysis. Energy 32:431–436

    CAS  Google Scholar 

  21. de Levie R (1999) The electrolysis of water. J Electroanal Chem 476:92–93

    Google Scholar 

  22. van Troostwijk AP, Deiman JR (1789) Lettre à M. de la Mètherie, sur une manière de dècompose l’eau en air inflammable et en air vital. Journal de physique, de chimie et de l’histoire naturelle 35:369–378

    Google Scholar 

  23. Trasatti S (1999) 1799–1999: Alessandro Volta’s ‘electric pile’ – Two hundred years, but it doesn’t seem like it. J Electroanal Chem 460:1–4

    Google Scholar 

  24. Berg H (2008) Johann Wilhelm Ritter – the founder of scientific electrochemistry. Rev Polagraphy 54:99–103

    Google Scholar 

  25. Hickling A, Hill S (1947) Oxygen overvoltage. Part 1. The influence of electrode material, current density, and time in aqueous solution. Discuss Faraday Soc 1:236–246

    Google Scholar 

  26. Ruetschi P, Delahay P (1955) Influence of electrode material on oxygen overvoltage: a theoretical analysis. J Chem Phys 23:556–560

    CAS  Google Scholar 

  27. Ritter JW (1800) Volta’s galvanische batterie: selbst Versuche mit derselben angestellt. Voigts Magazin für den neuesten Zustand der Naturkunde 2:356–400

    Google Scholar 

  28. von Hofmann AW (1866) Introduction to modern chemistry. Walton and Maberly, London

    Google Scholar 

  29. Classen A, Danneel H (1897) Quantitative analyse durch elektrolyse. Springer, Berlin

    Google Scholar 

  30. Sabatier P (1911) Announcement. Hydrogenation and dehydrogenation for catalysis. Ber Dtsch Chem Ges 44:1984–2001

    CAS  Google Scholar 

  31. Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis – calculations and concepts. Adv Catal 45:71–129

    CAS  Google Scholar 

  32. Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. Chemcatchem 3:1159–1165

    CAS  Google Scholar 

  33. Vojvodic A, Nørskov JK (2011) Optimizing perovskites for the water-splitting reaction. Science 334:1355–1356

    CAS  Google Scholar 

  34. Matsumoto Y, Yoneyama H, Tamura H (1977) Influence of nature of conduction-band of transition-metal oxides on catalytic activity foroxygen reduction. J Electroanal Chem 83:237–243

    CAS  Google Scholar 

  35. Matsumoto Y, Sato E (1979) Oxygen evolution on La1-XSrxMnO3 electrodes in alkaline-solutions. Electrochim Acta 24:421–423

    CAS  Google Scholar 

  36. Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. Chemcatchem 2:724–761

    CAS  Google Scholar 

  37. Gerken JB, McAlpin JG, Chen JYC, Rigsby ML, Casey WH, Britt RD, Stahl SS (2011) Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J Am Chem Soc 133:14431–14442

    CAS  Google Scholar 

  38. Surendranath Y, Kanan MW, Nocera DG (2010) Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J Am Chem Soc 132:16501–16509

    CAS  Google Scholar 

  39. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Risch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Risch, M., Suntivich, J., Shao-Horn, Y. (2014). Oxygen Evolution Reaction. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_407

Download citation

Publish with us

Policies and ethics

Navigation