Iterative Motion Planning and Safety Issue

  • Reference work entry
Handbook of Intelligent Vehicles

Abstract

This chapter addresses safe mobile robot navigation in complex environments. The challenges in this class of navigation problems include nontrivial vehicle dynamics and terrain interaction, static and dynamic environments, and incomplete information.

This complexity prompted the design of hierarchical solutions featuring a multilevel strategy where strategic behaviors are planned at a global scale and tactical or safety decisions are made at a local scale. While the task of the high level is generally to compute the sequence of waypoints or waystates to reach the goal, the local planner computes the actual trajectory that will be executed by the system. Due to computational resource limitations, finite sensing horizon, and temporal constraints of mobile robots, the local trajectory is only partially computed to provide a motion that makes progress toward the goal state. This chapter focuses on safely and efficiently computing the local trajectory in the context of mobile robot navigation.

This chapter is divided into three sections: motion safety, iterative motion planning, and applications. Motion safety discusses the issues related to determining if a trajectory is safely traversable by a mobile robot. Iterative motion planning reviews developments in local motion planning search space design with a focus on potential field, sampling, and graph search techniques. The applications section surveys experiments and applications in autonomous mobile robot navigation in outdoor and urban environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Althoff D, Althoff M, Wollherr D, Buss M (2010) Probabilistic collision state checker for crowded environments. In: IEEE international conference on robotics and automation, Anchorage. doi:10.1109/ROBOT.2010.5509369

    Google Scholar 

  • Amar F, Bidaud P, Ouezdou F (1993) On modeling and motion planning of planetary vehicles. In: Proceedings of the 1993 IEEE/RSJ international conference on intelligent robots and systems, vol 2, Yokohama, pp 1381–1386

    Google Scholar 

  • Aubin JP (1991) Viability theory. Birkhuser, Boston

    MATH  Google Scholar 

  • Bacha A, Bauman C, Faruque R, Fleming M, Terwelp C, Reinholtz C, Hong D, Wicks A, Alberi T, Anderson D, Cacciola S, Currier P, Dalton A, Farmer J, Hurdus J, Kimmel S, King P, Taylor A, van Covern D, Webster M (2008) Odin: team VictorTango’s entry in the DARPA urban challenge. J Field Robot 25(8). doi:10.1002/rob.20248

    Google Scholar 

  • Bautin A, Martinez-Gomez L, Fraichard T (2010) Inevitable collision states, a probabilistic perspective. In: IEEE international conference on robotics and automation, Anchorage. doi:10.1109/ROBOT.2010.5509233

    Google Scholar 

  • Bekris K, Kavraki L (2007) Greedy but safe replanning under kinodynamic constraints. In: IEEE international conference on robotics and automation, Rome. doi:10.1109/ROBOT.2007.363069

    Google Scholar 

  • Benenson R, Petti S, Fraichard T, Parent M (2006) Integrating perception and planning for autonomous navigation of urban vehicles. In: IEEE/RSJ international conference on intelligent robots and systems, Bei**g. doi:10.1109/IROS.2006.281806

    Google Scholar 

  • Biesiadecki J, Maimone M (2006) The mars exploration rover surface mobility flight software: Driving ambition. In: Proceedings of the 2006 IEEE aerospace conference, Pasadena, 2006

    Google Scholar 

  • Borenstein J, Korem Y (1991) The vector field histogram - fast obstacle avoidance for mobile robots. IEEE Trans Robot Autom 7(3). doi:10.1109/70.88137

    Google Scholar 

  • Braid D, Broggie A, Schmiedel G (2006) The terramax autonomous vehicle. J Field Robot 23(9):693–708

    Article  Google Scholar 

  • Broadhurst A, Baker S, Kanade T (2005) Monte Carlo road safety reasoning. In: IEEE intelligent vehicles symposium, Las Vegas. doi:10.1109/IVS.2005.1505122

    Google Scholar 

  • Brockett R (1981) Control theory and singular Riemann Geometry. Springer, New York

    Google Scholar 

  • Broggi A, Bertozzi M, Fascioli A, Guarino Lo Bianco C, Piazzi A (1999) The ARGO autonomous vehicle’s vision and control systems. Int J Intell Contr Syst 3(4):409–441

    Google Scholar 

  • Broggi A, Medici P, Cardarelli E, Cerri P, Giacomazzo A, Finardi N (2010) Development of the control system for the vislab intercontinental autonomous challenge. In: IEEE international conference on intelligent transportation systems, Madeira. doi:10.1109/ITSC.2010.5625001

    Google Scholar 

  • Chan N, Zucker M, Kuffner J (2007) Towards safe motion planning for dynamic systems using regions of inevitable collision. In: Collision-free motion planning for dynamic systems workshop, Rome

    Google Scholar 

  • Cheng P, LaValle S (2001) Reducing metric sensitivity in randomized trajectory design. In: IEEE/RSJ international conference on intelligent robots and systems, Hawaii. doi:10.1109/IROS.2001.973334

    Google Scholar 

  • Coulter R (1992) Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie Mellon University

    Google Scholar 

  • Daily M, Harris J, Keirsey D, Olin K, Payton D, Reiser K, Rosenblatt J, Tseng D, Wong V (1988) Autonomous cross-country navigation with the alv. In: Proceedings of the IEEE international conference on robotics and automation, Philadelphia, pp 718–726

    Google Scholar 

  • Delingette H, Gerbert M, Ikeuchi K (1991) Trajectory generation with curvature constraint based on energy minimization. In: Proceedings of the 1991 IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, vol 1, pp 206–211

    Google Scholar 

  • Dubins L (1957) On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tagents. Am J Math 79:497–516

    Article  MathSciNet  MATH  Google Scholar 

  • Elnagar A, Gupta K (1998) Motion prediction of moving objects based on autoregressive model. IEEE Trans Syst Man Cybern A Syst Hum 28(6). doi:10.1109/3468.725351

    Google Scholar 

  • Erdmann M, Lozano-Perez T (1987) On multiple moving objects. Algorithmica 2:477–521

    Article  MathSciNet  MATH  Google Scholar 

  • Ferguson D, Stentz A (2006) Multi-resolution field d∗. In: Proceedings of the international conference on intelligent autonomous systems, Pittsburgh, pp 65–74

    Google Scholar 

  • Ferguson D, Darms M, Urmson C, Kolski S (2008a) Detection, prediction, and avoidance of dynamic obstacles in urban environments. In: IEEE intelligent vehicles symposium, Eindhoven. doi:10.1109/IVS.2008.4621214

    Google Scholar 

  • Ferguson D, Howard T, Likhachev M (2008b) Motion planning in urban environments: part i. In: Proceedings of the 2008 IEEE/RSJ international conference on intelligent robots and systems, Hoboken, 2008

    Google Scholar 

  • Fiorini P, Shiller Z (1998) Motion planning in dynamic environments using velocity obstacles. Int J Robot Res 17(7):760–772

    Article  Google Scholar 

  • Fletcher L, Teller S, Olson E, Moore D, Kuwata Y, How J, Leonard J, Miller I, Campbell M, Huttenlocher D, Nathan A, Kline FR (2008) The MIT – cornell collision and why it happened. Int J Field Robot 25(10):775–807

    Article  Google Scholar 

  • Fox D, Burgard W, Thrun S (1997) The dynamic window approach to collision avoidance. IEEE Robot Autom Mag 4(1):23–33

    Article  Google Scholar 

  • Fraichard T (1993) Dynamic trajectory planning with dynamic constraints: a ‘state-time space’ approach. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Yokohama, doi:10.1109/IROS.1993.583794

    Google Scholar 

  • Fraichard T (2007) A short paper about motion safety. In: IEEE international conference on robotics and automation, Rome, doi:10.1109/ROBOT.2007.363138

    Google Scholar 

  • Fraichard T, Asama H (2004) Inevitable collision states. A step towards safer robots? Adv Robot 18(10):1001–1024

    Article  Google Scholar 

  • Frazzoli E, Feron E, Dahleh M (2002) Real-time motion planning for agile autonomous vehicle. AIAA J Guid Control Dyn 25(1):116–129

    Article  Google Scholar 

  • Haddad H, Khatib M, Lacroix S, Chatila R (1998) Reactive navigation in outdoor environments using potential fields. In: Proceedings of the 1998 IEEE conference on robotics and automation, Leuven, vol 2, pp 1232–1237

    Google Scholar 

  • Hart P, Nilsson N, Raphael B (1968) A formal basis for the heuristic determination of minimum-cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107

    Article  Google Scholar 

  • Howard T (2009) Adaptive model-predictive motion planning for navigation in complex environments. PhD thesis, Carnegie Mellon University

    Google Scholar 

  • Howard T, Kelly A (2007) Rough terrain trajectory generation for wheeled mobile robots. Int J Robot Res 26(2):141–166

    Article  Google Scholar 

  • Howard T, Green C, Kelly A, Ferguson D (2008) State space sampling of feasible motions for high-performance mobile robot navigation in complex environments. J Field Robot 25(6–7):325–345

    Article  Google Scholar 

  • Hsu D, Kindel R, Latombe JC, Rock S (2002) Randomized kinodynamic motion planning with moving obstacles. Int J Robot Res 21(3):233–255

    Article  Google Scholar 

  • Iagnemma K, Shimoda S, Shiller Z (2008) Near-optimal navigation of high speed mobile robots on uneven terrain. In: Proceedings of the 2008 international conference on robotics and automation, Pasadena, 2008

    Google Scholar 

  • Jackson J, Crouch P (1991) Curved path approaches and dynamic interpolation. In: IEEE aerospace and electronic systems magazine, Glendale

    Google Scholar 

  • Jochem T, Pomerleau D, Kumar B, Armstrong J (1995) PANS: a portable navigation platform. In: IEEE intelligent vehicles symposium, Detroit, doi:10.1109/IVS.1995.528266

    Google Scholar 

  • Kalisiak M, van de Panne M (2007) Faster motion planning using learned local viability models. In: IEEE international conference on robotics and automation, Rome. doi:10.1109/ROBOT.2007.363873

    Google Scholar 

  • Kalmár-Nagy T, D’Andrea R, Ganguly P (2004) Near-optimal dynamic trajectory generation and control of a omni-directional vehicle. Robot Auton Syst 46:47–64

    Article  Google Scholar 

  • Kanayama Y, Hartman B (1989) Smooth local path planning for autonomous vehicles. In: Proceedings of the 1989 international conference on robotics and automation, Santa Barbara, vol 3, pp 1265–1270

    Google Scholar 

  • Kanayama Y, Miyake N (1985) Trajectory generation for mobile robots. In: Proceedings of the international symposium on robotics research, Gouvieux, pp 16–23

    Google Scholar 

  • Kelly A, Nagy B (2003) Reactive nonholonomic trajectory generation via parametric optimal control. Int J Robot Res 22(7):583–601

    Article  Google Scholar 

  • Kelly A, Stentz T (1998) Rough terrain autonomous mobility - part 2: an active vision and predictive control approach. Auton Robot 5:163–198

    Article  Google Scholar 

  • Kelly A, Stentz T, Amidi O, Bode M, Bradley D, Mandelbaum R, Pilarski T, Rander P, Thayer S, Vallidis N, Warner R (2006) Toward reliable off-road autonomous vehicles operating in challenging environments. Int J Robot Res 25(5):449–483

    Article  Google Scholar 

  • Khatib O (1986a) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1). doi:10.1177/027836498600500106

    Google Scholar 

  • Khatib O (1986b) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1):90–98

    Article  MathSciNet  Google Scholar 

  • Knepper R, Srinivasa S, Mason M (2010) An equivalent relation for local path sets. In: Proceedings of the ninth international workshop on the algorithmic foundations of robotics, Singapore

    Google Scholar 

  • Koenig S, Likhachev M (2002) D* lite. In: Proceedings of the AAAI conference on artificial intelligence, Edmonton

    Google Scholar 

  • Komoriya K, Tanie K (1989) Trajectory design and control of a wheel-type mobile robot using b-spline curve. In: Proceedings of the 1989 IEEE/RSJ international conference on intelligent robots and systems, Tsukuba, pp 398–405

    Google Scholar 

  • Kuwata Y, Karaman S, Teo J, Frazzoli E, How J, Fiore G (2009) Real-time motion planning with applications to autonomous urban driving. IEEE Trans Contr Syst Technol 17(5). doi:10.1109/TCST.2008.2012116

    Google Scholar 

  • Lavalle S (1998) Rapidly-exploring random trees: a new tool for path planning. Technical report, 98-11, Department of Computer Science, Iowa State University

    Google Scholar 

  • Lavalle S (2006) Planning algorithms. Cambridge University Press. http://planning.cs.uiuc.edu/. Accessed 26 Sep 2011

  • LaValle S, Kuffner J (1999) Randomized kinodynamic planning. In: IEEE international conference on robotics and automation, Detroit, doi:10.1109/ROBOT.1999.770022

    Google Scholar 

  • Lozano-Perez T (1983) Spatial planning, a configuration space approach. IEEE Trans Compt 32(2):108–120

    Article  MathSciNet  MATH  Google Scholar 

  • Minguez J, Montano L (2004) Nearness diagram (ND) navigation: collision avoidance in troublesome scenarios. IEEE Trans Robot Autom 20(1):45–59

    Article  Google Scholar 

  • Mitchell I, Tomlin C (2003) Overapproximating reachable sets by hamilton-jacobi projections. J Sci Comput 19(1–3). doi:10.1023/A:1025364227563

    Google Scholar 

  • Montemerlo M, Becker J, Bhat S, Dahlkamp H, Dolgov D, Ettinger S, Haehnel D, Hilden T, Hoffmann G, Huhnke B, Johnston D, Klumpp S, Langer D, Levandowski A, Levinson J, Marcil J, Orenstein D, Paefgen J, Penny I, Petrovskaya A, Pflueger M, Stanek G, Stavens D, Vogt A, Thrun S (2008) Junior: the stanford entry in the urban challenge. J Field Robot 25(9). doi:10.1002/rob.20258

    Google Scholar 

  • Murray R, Sastry S (1993) Nonholonomic motion planning: steering using sinusoids. IEEE Trans Autom Contr 38:700–716

    Article  MathSciNet  MATH  Google Scholar 

  • Petti S, Fraichard T (2005) Safe motion planning in dynamic environments. In: Proceedings of the IEEE-RSJ international conference on intelligent robots and systems, Edmonton

    Google Scholar 

  • Pivtoraiko M, Knepper R, Kelly A (2009) Differentially constrained mobile robot motion planning in state lattices. J Field Robot 26(3):308–333

    Article  Google Scholar 

  • Prajna S, Jadbabaie A, Pappas G (2007) A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans Autom Contr 52(8). doi:10.1109/TAC.2007.902736

    Google Scholar 

  • Reeds J, Shepp L (1990) Optimal paths for a car that goes both forwards and backwards. Pacific J Math 145(2):367–393

    MathSciNet  Google Scholar 

  • Reichardt D, Shick J (1994) Collision avoidance in dynamic environments applied to autonomous vehicle guidance on the motorway. In: IEEE intelligent vehicles symposium, New York, doi:10.1109/IVS.1994.639475

    Google Scholar 

  • Reif J, Sharir M (1985) Motion planning in the presence of moving obstacles. In: IEEE symposium on the foundations of computer science, Cambridge, doi:10.1109/SFCS.1985.36

    Google Scholar 

  • Rogers-Marcovitz F, Kelly A (2010) On-line mobile robot model identification using integrated perturbative dynamics. In: Proceedings of the 2010 international symposium on experimental robotics, Delhi

    Google Scholar 

  • Rohrmuller F, Althoff M, Wollherr D, Buss M (2008) Probabilistic map** of dynamic obstacles using markov chains for replanning in dynamic environments. In: IEEE/RSJ international conference on intelligent robots and systems, Nice. doi:10.1109/IROS.2008.4650952

    Google Scholar 

  • Schmidt C, Oechsle F, Branz W (2006) Research on trajectory planning in emergency situations with multiple objects. In: IEEE intelligent transportation systems conference, Toronto, doi:10.1109/ITSC.2006.1707153

    Google Scholar 

  • Seder M, Petrovic I (2007) Dynamic window based approach to mobile robot motion control in the presence of moving obstacles. In: IEEE international conference robotics and automation, Roma

    Google Scholar 

  • Shiller Z, Chen J (1990) Optimal motion planning of autonomous vehicles in three-dimensional terrains. In: Proceedings of the IEEE international conference on robotics and automation, Cincinnatti, pp 198–203

    Google Scholar 

  • Shin D, Singh S (1991) Path generation for robot vehicles using composite clothoid segments. Technical report, Carnegie Mellon University

    Google Scholar 

  • Song D, Lee H, Yi J, Levandowski A (2007) Vision-based motion planning for an autonomous motorcycle on ill-structured roads. Auton Robot 23(3):197–212

    Article  Google Scholar 

  • Stentz A, Herbert M (1995) A complete navigation system for goal acquisition in unknown environments. Auton Robot 2(2):127–145

    Article  Google Scholar 

  • Stentz A, Kelly A, Herman H, Rander P, Amidi O, Mandelbaum R (2002) Integrated air/ground vehicle system for semi-autonomous off-road navigation. In: Proceedings of the AUVSI unmanned systems symposium, Orlando, 2002

    Google Scholar 

  • Thrun S (2010) What we’re driving at. The official Google blog. http://googleblog.blogspot.com/2010/10/what-were-driving-at.html. Accessed 26 Sep 2011

  • Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J, Fong P, Gale J, Halpenny M, Hoffman G, Lau K, Oakley C, Palatucci M, Pratt V, Stang P, Strohband S, Dupont C, Jendrossek L, Koelen C, Markey C, Rummel C, van Niekerk J, Jensen E, Alessandrini P, Bradski G, Davies B, Ettinger S, Kaehler A, Naflan A, Mahoney P (2006) Stanley: the robot that won the darpa grand challenge. J Field Robot 23(8):661–692

    Article  Google Scholar 

  • Tilbury D, Laumond J, Murray R, Sastry S, Walsh G (1992) Steering car-like systems with trailers using sinusoids. In: Proceedings of the 1992 IEEE international conference on robotics and automation, Nice

    Google Scholar 

  • Ulmer B (1992) VITA-an autonomous road vehicle (ARV) for collision avoidance in traffic. In: IEEE intelligent vehicles symposium, New York, doi:10.1109/IVS.1992.252230

    Google Scholar 

  • Ulmer B (1994) VITA II-active collision avoidance in real traffic. In: IEEE intelligent vehicles symposium, New York, doi:10.1109/IVS.1994.639460

    Google Scholar 

  • Ulrich I, Borenstein J (2000) VFH∗: local obstacle avoidance with look-ahead verification. In: IEEE international conference on robotics and automation, Washington, DC, doi:10.1109/ROBOT.2000.846405

    Google Scholar 

  • Urmson C, Ragusa C, Ray D, Anahlt J, Bartz D, Galatali T, Gutierrez A, Johnston J, Harbaugh S, Kato H, Messner W, Miller N, Peterson K, Smith B, Snider J, Spiker S, Ziglar J, Whittaker W, Clark M, Koon P, Mosher A, Struble J (2006) A robust approach to high-speed navigation for unrehearsed desert terrain. J Field Robot 23(8):467–508

    Article  MATH  Google Scholar 

  • van den Berg J, Overmars M (2008) Planning time-minimal safe paths amidst unpredictably moving obstacles. Int Journal of Robotics Research 27(11–12). doi:10.1177/0278364908097581

    Google Scholar 

  • Vasquez D (2007) Incremental learning for motion prediction of pedestrians and vehicles. PhD thesis, Inst. Nat. Polytechnique de Grenoble. http://tel.archives-ouvertes.fr/tel-00155274. Accessed 26 Sep 2011

  • Vasquez D, Fraichard T, Laugier C (2009) Growing hidden Markov models: a tool for incremental learning and prediction of motion. Int J Robot Res 28(11–12):1486–1506

    Article  Google Scholar 

  • Vatcha R, **ao L (2008) Perceived CT-space for motion planning in unknown and unpredictable environments. In: Workshop on algorithmic foundations of robotics, Guanajuato

    Google Scholar 

  • Wettergreen D, Tompkins P, Urmson C, Wagner M, Whittaker W (2005) Sun-synchronous robotics exploration: technical description and field experimentation. Int J Robot Res 24(1):3–30

    Article  Google Scholar 

  • **a T, Yang M, Yang R, Wang C (2010) Cyberc3: a prototype cybernetic transportation system for urban applications. IEEE Trans Intell Transp Syst 11(1). doi:10.1109/TITS.2009.2036151

    Google Scholar 

Download references

Acknowledgments

A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Fraichard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Ltd.

About this entry

Cite this entry

Fraichard, T., Howard, T.M. (2012). Iterative Motion Planning and Safety Issue. In: Eskandarian, A. (eds) Handbook of Intelligent Vehicles. Springer, London. https://doi.org/10.1007/978-0-85729-085-4_55

Download citation

Publish with us

Policies and ethics

Navigation