Mumford and Shah Model and its Applications to Image Segmentation andImage Restoration

  • Reference work entry
Handbook of Mathematical Methods in Imaging

Abstract

We present in this chapter an overview of the Mumford and Shah model for image segmentation. We discuss its various formulations, some of its properties, the mathematical framework, and several approximations. We also present numerical algorithms and segmentation results using the Ambrosio–Tortorelli phase-field approximations on one hand, and using the level set formulations on the other hand. Several applications of the Mumford–Shah problem to image restoration are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 679.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References and Further Reading

  1. Adams RA (1975) Sobolev spaces. Academic, New York

    MATH  Google Scholar 

  2. Alicandro R, Braides A, Shah J (1999) Free-discontinuity problems via functionals involving the L1-norm of the gradient and their approximation. Interfaces Free Bound 1:17–37

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio L (1989) A compactness theorem for a special class of functions of bounded variation. Boll Un Mat Ital 3(B):857–881

    Google Scholar 

  4. Ambrosio L, Fusco N, Pallara D (2000) Functions of bounded variation and free discontinuity problems. Oxford University Press, New York

    MATH  Google Scholar 

  5. Ambrosio L, Tortorelli VM (1990) Approximation of functionals depending on jumps by elliptic functionals via \(\Gamma \)-convergence. Comm Pure Appl Math 43(8):999–1036

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio L, Tortorelli VM (1992) On the approximation of free discontinuity problems. Boll Un Mat Ital B7(6):105–123

    MathSciNet  Google Scholar 

  7. Aubert G, Blanc-Féraud L, March R (2006) An approximation of the Mumford-Shah energy by a family of discrete edge-preserving functionals. Nonlinear Anal 64(9):1908–1930

    Article  MathSciNet  MATH  Google Scholar 

  8. Aubert G, Kornprobst P (2006) Mathematical problems in image processing. Springer, New York

    MATH  Google Scholar 

  9. Bar L, Brook A, Sochen N, Kiryati N (2007) Deblurring of color images corrupted by impulsive noise. IEEE Trans Image Process 16(4):1101–1111

    Article  MathSciNet  Google Scholar 

  10. Bar L, Sochen N, Kiryati N (2004) Variational pairing of image segmentation and blind restoration. In Proceedings of 8th European conference on computer vision, vol 3022 of LNCS, pp 166–177

    Google Scholar 

  11. Bar L, Sochen N, Kiryati N (2005) Image deblurring in the presence of salt-and-pepper noise. In Proceedings of 5th international conference on scale space and PDE methods in computer vision, vol 3459 of LNCS, pp 107–118

    Google Scholar 

  12. Bar L, Sochen N, Kiryati N (2006) Image deblurring in the presence of impulsive noise. Int J Comput Vis 70:279–298

    Article  Google Scholar 

  13. Bar L, Sochen N, Kiryati N (2006) Semi-blind image restoration via Mumford-Shah regularization. IEEE Trans Image Process 15(2):483–493

    Article  Google Scholar 

  14. Bar L, Sochen N, Kiryati N (2007) Convergence of an iterative method for variational deconvolution and impulsive noise removal. SIAM J Multiscale Model Simulat 6:983–994

    Article  MathSciNet  MATH  Google Scholar 

  15. Bar L, Sochen N, Kiryati N (2007) Restoration of images with piecewise space-variant blur. In Proceedings of 1st international conference on scale space and variational methods in computer vision, pp 533–544

    Google Scholar 

  16. Blake A, Zisserman A (1987) Visual reconstruction. MIT Press, Cambridge

    Google Scholar 

  17. Bourdin B (1999) Image segmentation with a finite element method. M2AN Math Model Numer Anal 33(2):229–244

    Google Scholar 

  18. Bourdin B, Chambolle A (2000) Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer Math 85(4):609–646

    Article  MathSciNet  MATH  Google Scholar 

  19. Braides A (1998) Approximation of free-discontinuity problems, vol 1694 of Lecture notes in mathematics. Springer, Berlin

    Google Scholar 

  20. Braides A, Dal Maso G (1997) Nonlocal approximation of the Mumford-Shah functional. Calc Var 5:293–322

    Article  MathSciNet  MATH  Google Scholar 

  21. Bregman LM (1967) The relaxation method for finding common points of convex sets and its application to the solution of problems in convex programming. USSR Comp Math Phys 7:200–217

    Article  Google Scholar 

  22. Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. SIAM MMS 4(2):490–530

    MathSciNet  MATH  Google Scholar 

  23. Chambolle A (1992) Un théorème de \(\gamma \)-convergence pour la segmentation des signaux. C R Acad Sci Paris Sér. I Math 314(3):191–196

    MathSciNet  MATH  Google Scholar 

  24. Chambolle A (1995) Image segmentation by variational methods: Mumford and Shah functional, and the discrete approximation. SIAM J Appl Math 55:827–863

    Article  MathSciNet  MATH  Google Scholar 

  25. Chambolle A (1999) Finite-differences discretizations of the Mumford-Shah functional. M2AN Math Model Numer Anal 33(2):261–288

    Google Scholar 

  26. Chambolle A (2000) Inverse problems in image processing and image segmentation: some mathematical and numerical aspects. In: Chidume CE (ed) ICTP Lecture notes series, vol 2. ICTP

    Google Scholar 

  27. Chambolle A, Dal Maso G (1999) Discrete approximation of the Mumford-Shah functional in dimension two. M2AN Math Model Numer Anal 33(4):651–672

    Google Scholar 

  28. Chan T, Vese L (1999) An active contour model without edges. Lecture Notes Comput Sci 1682:141–151

    Article  Google Scholar 

  29. Chan T, Vese L (2000) An efficient variational multiphase motion for the Mumford-Shah segmentation model. In 34th Asilomar conference on signals, systems, and computers, vol 1, pp 490–494

    Google Scholar 

  30. Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10:266–277

    Article  MATH  Google Scholar 

  31. Chan T, Vese L (2001) A level set algorithm for minimizing the Mumford-Shah functional in image processing. In IEEE/Computer Society proceedings of the 1st IEEE workshop on variational and level set methods in computer vision, pp 161–168

    Google Scholar 

  32. Chan TF, Shen J (2005) Image processing and analysis. Variational, PDE, wavelet, and stochastic methods. SIAM, Philadelphia

    Google Scholar 

  33. Chan TF, Wong CK (1998) Total variation blind deconvolution. IEEE Trans Image Process 7: 370–375

    Article  Google Scholar 

  34. Chung G, Vese LA (2005) Energy minimization based segmentation and denoising using a multilayer level set approach. Lecture Notes in Comput Sci 3757:439–455

    Article  Google Scholar 

  35. Chung G, Vese LA (2009) Image segmentation using a multilayer level-set approach. Computing Visual Sci 12(6):267–285

    Article  MathSciNet  MATH  Google Scholar 

  36. Cohen L, Bardinet E, Ayache N (1993) Surface reconstruction using active contour models. In SPIE ’93 conference on geometric methods in computer vision, San Diego, July 1993

    Google Scholar 

  37. Cohen LD (1997) Avoiding local minima for deformable curves in image analysis. In: Le Méhauté A, Rabut C, Schumaker LL (eds) Curves and Surfaces with applications in CAGD, pp 77–84

    Google Scholar 

  38. Dal Maso G (1993) An introduction to \(\Gamma \)-convergence. Progress in nonlinear differential equations and their applications. Birkhäuser, Boston

    Google Scholar 

  39. David G (2005) Singular sets of minimizers for the Mumford-Shah functional. Birkhäuser Verlag, Basel

    MATH  Google Scholar 

  40. Evans LC (1998) Partial differential equations. American Mathematical Society, Providence, Rhode Island

    MATH  Google Scholar 

  41. Evans LC, Gariepy RF (1992) Measure theory and fine properties of functions. CRC Press

    Google Scholar 

  42. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesean restoration of images. IEEE TPAMI 6:721–741

    Article  MATH  Google Scholar 

  43. Gilboa G, Osher S (2007) Nonlocal linear image regularization and supervised segmentation. SIAM MMS 6(2):595–630

    MathSciNet  MATH  Google Scholar 

  44. Gilboa G, Osher S (2008) Nonlocal operators with applications to image processing. Multiscale Model Simulat 7(3):1005–1028

    Article  MathSciNet  MATH  Google Scholar 

  45. Huber PJ (1981) Robust statistics. Wiley, New York

    Book  MATH  Google Scholar 

  46. Jung M, Chung G, Sundaramoorthi G, Vese LA, Yuille AL (2009) Sobolev gradients and joint variational image segmentation, denoising and deblurring. In: IS&T/SPIE on electronic imaging, vol 7246 of Computational imaging VII, pp 72460I–1–72460I–13

    Google Scholar 

  47. Jung M, Vese LA (2009) Nonlocal variational image deblurring models in the presence of gaussian or impulse noise. In: International conference on Scale Space and Variational Methods in Computer Vision (SSVM’ 09), vol 5567 of LNCS, pp 402–413

    Google Scholar 

  48. Kim J, Tsai A, Cetin M, Willsky AS (2002) A curve evolution-based variational approach to simultaneous image restoration and segmentation. In: Proceedings of IEEE international conference on image processing, vol 1, pp 109–112

    Google Scholar 

  49. Koepfler G, Lopez C, Morel JM (1994) A multiscale algorithm for image segmentation by variational methods. SIAM J Numer Anal 31(1): 282–299

    Article  MathSciNet  MATH  Google Scholar 

  50. Kundur D, Hatzinakos D (1996) Blind image deconvolution. Signal Process Mag 13:43–64

    Article  Google Scholar 

  51. Kundur D, Hatzinakos D (1996) Blind image deconvolution revisited. Signal Process Mag 13:61–63

    Article  Google Scholar 

  52. Larsen CJ (1998) A new proof of regularity for two-shaded image segmentations. Manuscripta Math 96:247–262

    Article  MathSciNet  MATH  Google Scholar 

  53. Leonardi GP, Tamanini I (1998) On minimizing partitions with infinitely many components. Ann Univ Ferrara - Sez. VII - Sc. Mat XLIV:41–57

    Google Scholar 

  54. Li C, Kao C-Y, Gore JC, Ding Z (2007) Implicit active contours driven by local binary fitting energy. In IEEE conference on computer vision and pattern recognition (CVPR), CVPR’07

    Google Scholar 

  55. Dal Maso G, Morel JM, Solimini S (1989) Variational approach in image processing – existence and approximation properties. C R Acad Sci Paris Sér. I Math 308(19):549–554

    MathSciNet  MATH  Google Scholar 

  56. Dal Maso G, Morel JM, Solimini S (1992) A variational method in image segmentation - existence and approximation properties. Acta Mathem 168(1–2):89–151

    Article  MathSciNet  MATH  Google Scholar 

  57. Massari U, Tamanini I (1993) On the finiteness of optimal partitions. Ann Univ Ferrara – Sez VII - Sc Mat XXXIX:167–185

    Google Scholar 

  58. Modica L (1987) The gradient theory of phase transitions and the minimal interface criterion. Arch Rational Mech Anal 98: 123–142

    Article  MathSciNet  MATH  Google Scholar 

  59. Modica L, Mortola S (1977) Un esempio di \(\gamma \)-convergenza. Boll Un Mat Ital B(5)(14): 285–299

    Google Scholar 

  60. Mohieddine R, Vese LA (2010) Open curve level set formulations for the Mumford and Shah segmentation model. UCLA C.A.M. Report, pp 10–33

    Google Scholar 

  61. Morel J-M, Solimini S (1995) Variational methods in image segmentation. Birkhäuser, Boston

    Book  Google Scholar 

  62. Mumford D, Shah J (1985) Boundary detection by minimizing functionals. In Proceedings of IEEE conference on computer vision and pattern recognition, pp 22–26

    Google Scholar 

  63. Mumford D, Shah J (1989) Boundary detection by minimizing functionals. In: Ullman S, Richards W (eds) Image understanding. Springer, Berlin, pp 19–43

    Google Scholar 

  64. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Comm Pure Appl Math 42:577–685

    Article  MathSciNet  MATH  Google Scholar 

  65. Neuberger JW (1997) Sobolev gradients and differential equations. Springer lecture notes in mathematics, vol 1670

    Google Scholar 

  66. Nikolova M (2002) Minimizers of cost-functions involving nonsmooth data-fidelity terms: application to the processing of outliers. SIAM J Numer Anal 40:965–994

    Article  MathSciNet  MATH  Google Scholar 

  67. Nikolova M (2004) A variational approach to remove outliers and impulse noise. J Math Imaging Vis 20:99–120

    Article  MathSciNet  Google Scholar 

  68. Osher S, Burger M, Goldfarb D, Xu J, Yin W (2005) An iterative regularization method for total variation based image restoration. SIAM MMS 4:460–489

    MathSciNet  MATH  Google Scholar 

  69. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  70. Osher SJ, Fedkiw RP (2002) Level set methods and dynamic implicit surfaces. Springer, New York

    Google Scholar 

  71. Renka RJ (2006) A Simple Explanation of the Sobolev Gradient Method. (online manuscript at http://www.cse.unt.edu/~renka/papers/sobolev.pdf)

  72. Richardson WB (2008) Sobolev gradient preconditioning for image processing PDEs. Commun Numer Meth Eng 24:493–504

    Article  MATH  Google Scholar 

  73. Rudin L, Osher S (1994) Total variation based image restoration with free local constraints. In: Proceedings of IEEE international conference on image processing, vol 1, Austin, pp 31–35

    Google Scholar 

  74. Rudin LI, Osher S, Fatemi E (1992) Non linear total variation based noise removal algorithms. Physica D 60:259–268

    Article  MATH  Google Scholar 

  75. Samson C, Blanc-Féraud L, Aubert G, Zerubia J (1999) Multiphase evolution and variational image classification. Technical Report 3662, INRIA Sophia Antipolis

    Google Scholar 

  76. Sethian JA (1996) Level set methods. Evolving interfaces in geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press

    Google Scholar 

  77. Sethian JA (1999) Level set methods and fast marching methods. Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge

    Google Scholar 

  78. Shah J (1996) A common framework for curve evolution, segmentation and anisotropic diffusion. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 136–142

    Google Scholar 

  79. Smereka P (2000) Spiral crystal growth. Physica D 138:282–301

    Article  MathSciNet  MATH  Google Scholar 

  80. Tamanini I (1996) Optimal approximation by piecewise constant functions. In: Progress in nonlinear differential equations and their applications, vol 25. Birkhäuser Verlag, Basel, pp 73–85

    Google Scholar 

  81. Tamanini I, Congedo G (1996) Optimal segmentation of unbounded functions. Rend Sem Mat Univ Padova 95:153–174

    MathSciNet  MATH  Google Scholar 

  82. Tikhonov AN, Arsenin V (1977) Solutions of ill-posed problems. Winston, Washington

    MATH  Google Scholar 

  83. Tsai A, Yezzi A, Willsky A (2001) Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans Image Process 10(8):1169–1186

    Article  MATH  Google Scholar 

  84. Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the Mumford and Shah model. Int J Comput Vis 50(3):271–293

    Article  MATH  Google Scholar 

  85. Vogel CR, Oman ME (1998) Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans Image Process 7:813–824

    Article  MathSciNet  MATH  Google Scholar 

  86. Weisstein EW Minimal residual method. MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/MinimalResidualMethod.html.

  87. You Y, Kaveh M (1996) A regularization approach to joint blur identification and image restoration. IEEE Trans Image Process 5:416–428

    Article  Google Scholar 

  88. Zhao HK, Chan T, Merriman B, Osher S (1996) A variational level set approach to multiphase motion. J Comput Phys 127:179–195

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Bar, L. et al. (2011). Mumford and Shah Model and its Applications to Image Segmentation andImage Restoration. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92920-0_25

Download citation

Publish with us

Policies and ethics

Navigation