Controlled Expression of Recombinant Genes and Preparation of Cell-Free Extracts in Yeast

  • Protocol
Yeast Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 313))

  • 6106 Accesses

Abstract

Biochemistry is an important experimental tool in the study of protein functions. Biochemical studies frequently involve overexpression of a cloned gene and purification of the recombinant protein. The yeast Saccharomyces cerevisiae provides an effective system for expression and purification of recombinant proteins owing to the ease of applying molecular techniques and obtaining large quantities of cells with a low cost. Additionally, complex biochemical processes such as transcription and DNA repair can be studied in yeast cell-free extracts in vitro, which benefit greatly from a large collection of well-defined mutant strains. Controlled gene expression and preparation of cell-free extracts are important techniques in the yeast system. Two commonly used inducible gene expression systems, the GAL1 promoter and the CUP1 promoter, are described. Protocols of preparing yeast whole cell extracts and nuclear extracts are presented, each of which is designed for specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yuan, F., Zhang, Y., Rajpal, D. K., et al. (2000) Specificity of DNA lesion bypass by the yeast DNA polymerase η. J. Biol. Chem. 275, 8233–8239.

    Article  PubMed  CAS  Google Scholar 

  2. Zhang, Y., Yuan, F., Wu, X., and Wang, Z. (2000) Preferential incorporation of G opposite template T by the low fidelity human DNA polymerase ι. Mol. Cell. Biol. 20, 7099–7108.

    Article  PubMed  CAS  Google Scholar 

  3. Zhang, Y., Yuan, F., **n, H., Wu, X., Rajpal, D., Yang, D., and Wang, Z. (2000) Human DNA polymerase κ synthesizes DNA with extraordinarily low fidelity. Nucleic Acids Res. 28, 4147–4156.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang, Y., Yuan, F., Wu, X., Rechkoblit, O., Taylor, J.-S., Geacintov, N. E., and Wang, Z. (2000) Error-prone lesion bypass by human DNA polymerase η. Nucleic Acids Res. 28, 4717–4724.

    Article  PubMed  CAS  Google Scholar 

  5. Lue, N. F., Flanagan, P. M., Edwards, A. M., and Kornberg, R. D. (1991) RNA polymerase II transcription in vitro. Methods Enzymol. 194, 545–550.

    Article  PubMed  CAS  Google Scholar 

  6. Wang, Z., Wu, X., and Friedberg, E. C. (1992) Excision repair of DNA in nuclear extracts from the yeast Saccharomyces cerevisiae. Biochemistry 31, 3694–3702.

    Article  PubMed  CAS  Google Scholar 

  7. Wang, Z., Wu, X., and Friedberg, E. C. (1993) Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90, 4907–4911.

    Article  PubMed  CAS  Google Scholar 

  8. Wang, Z., Wu, X., and Friedberg, E. C. (1996) A yeast whole cell extract supports nucleotide excision repair and RNA polymerase II transcription in vitro. Mutat. Res. 364, 33–41.

    Article  PubMed  Google Scholar 

  9. He, Z., Wong, J. M. S., Maniar, H. S., Brill, S. J., and Ingles, C. J. (1996) Assessing the requirements for nucleotide excision repair proteins of Saccharomyces cerevisiae in an in vitro system. J. Biol. Chem. 271, 28,243–28,249.

    Article  PubMed  CAS  Google Scholar 

  10. Schultz, M. C., Choe, S. Y., and Reeder, R. H. (1991) Specific initiation by RNA polymerase I in a whole-cell extract from yeast. Proc. Natl. Acad. Sci. USA 88, 1004–1008.

    Article  PubMed  CAS  Google Scholar 

  11. Wang, Z., Svejstrup, J. Q., Feaver, W. J., Wu, X., Kornberg, R. D., and Friedberg, E. C. (1994) Transcription factor b (TFIIH) is required during nucleotide-excision repair in yeast. Nature 368, 74–76.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, Z., Buratowski, S., Svejstrup, J. Q., et al. (1995) Yeast TFB1 and SSL1 genes, which encode subunits of transcription factor IIH, are required for nucleotide excision repair and RNA polymerase II transcription. Mol. Cell. Biol. 15, 2288–2293.

    PubMed  CAS  Google Scholar 

  13. Wang, Z., Wei, S., Reed, S. H., et al. (1997) The RAD7, RAD16 and RAD23 genes of S. cerevisiae: requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products. Mol. Cell. Biol. 17, 635–643.

    PubMed  CAS  Google Scholar 

  14. Wang, Z., Wu, X., and Friedberg, E. C. (1997) Molecular mechanism of base excision repair of uracil-containing DNA in yeast cell-free extracts. J. Biol. Chem 272, 24064–24071.

    Article  PubMed  CAS  Google Scholar 

  15. Lombaerts, M., Tijsterman, M., Verhage, R. A., and Brouwer, J. (1997) Saccharomyces cerevisiae mms19 mutants are deficient in transcription-coupled and global nucleotide excision repair. Nucleic Acids Res. 25, 3974–3979.

    Article  PubMed  CAS  Google Scholar 

  16. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  17. Gietz, R. D. and Sugino, A. (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527–534.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, Z., Wu, X., and Friedberg, E. C. (1991) Nucleotide excision repair of DNA by human cell extracts is suppressed in reconstituted nucleosomes. J. Biol. Chem. 266, 22472–22478.

    PubMed  CAS  Google Scholar 

  19. Lue, N. F., Flanagan, P. M., Sugimoto, K., and Kornberg, R. D. (1989) Initiation by yeast RNA polymerase II at the adenoviral major late promoter in vitro. Science 246, 661–664.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Wang, Z. (2006). Controlled Expression of Recombinant Genes and Preparation of Cell-Free Extracts in Yeast. In: **ao, W. (eds) Yeast Protocol. Methods in Molecular Biology, vol 313. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-958-3:317

Download citation

  • DOI: https://doi.org/10.1385/1-59259-958-3:317

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-437-1

  • Online ISBN: 978-1-59259-958-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation