Yeast Nuclear Genes for mtDNA Maintenance

  • Protocol
Mitochondrial DNA

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 197))

Abstract

The budding yeast Saccharomyces cerevisiae is a particularly suitable organism for identifying nuclear genes involved in the maintenance of the mitochondrial genome. Indeed, S. cerevisiae can grow and divide in the absence of respiration and, moreover, without mitochondrial DNA. In addition, the complete sequences of the nuclear and mitochondrial genomes of S. cerevisiae are available (1,2), classical genetics has extensively been carried out, and yeast genomics is exponentially develo**. Based on the Yeast Proteome Database (YPD) (http://www.proteome.com/), 464 yeast genes encode mitochondrial proteins and there are probably many more. However, our knowledge concerning the genes that are specifically involved in the maintenance of the yeast mitochondrial genome remains very incomplete. A specific feature of S. cerevisiae is that during vegetative growth, this yeast produces at highfrequency mutant cells that contain large deletions of mitochondrial DNA (for a review, see ref. 3). These cells which were initially called “petites” because they make small colonies (4) are also known as rho- mutants. They have an irreversible loss of respiration, do not grow on glycerol, and exhibit non-Mendelian inheritance. Cytoplasmic petites that are completely devoid of mitochondrial DNA are called rho0. Cytoplasmic petites are to be distinguished from Pet mutants, which do not grow on glycerol and exhibit classical Mendelian inheritance (5). A minority of Pet mutants are not able to maintain their mitochondrial DNA (for a review, see ref. 6). Some Pet rho0 mutants have mutations in mitochondrial proteins directly involved in mitochondrial DNA transactions, such as the yeast mitochondrial DNA polymerase MIP1 (7), the single-stranded DNA-binding protein RIM1 (8), or the RNA polymerase RPO41 (9). Others encode cytoplasmic or nuclear proteins that control the synthesis, or the flux, of metabolites necessary for mitochondrial DNA synthesis, such as the thymidylate kinase (10), thymidylate synthase (10), or subunits of the ribonucleotide reductase (11,12). Finally, some genes encode proteins shared by the nucleus and the mitochondrion such as the CDC9 ligase (13,14). For more detailed information, we wish to refer to the remarkable review by Contamine and Picard (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 69.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goffeau, A., Barrell, B. G., Bussey, H., et al. (1996) Life with 6000 genes. Science 274, 563–567.

    Article  Google Scholar 

  2. Foury, F., Roganti, T., Lecrenier, N., and Purnelle, B. (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett. 440, 325–331.

    Article  PubMed  CAS  Google Scholar 

  3. Dujon, B. (1981) Mitochondrial genetics and function, in The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (Strathern, J. N., Jones, E. W., and Broach, J. R.,eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp, 505–635.

    Google Scholar 

  4. Ephrussi, B., Hottinguer, H., and Tavlizki, J. (1949) Action de l’acriflavine sur les levures. I. La mutation’petite colonie’. Ann. Inst. Pasteur 76, 351–367.

    Google Scholar 

  5. Tzagoloff, A. and Dieckmann, C. L. (1990) PET genes of Saccharomyces cerevisiae. Microbiol. Rev. 54, 211–225.

    PubMed  CAS  Google Scholar 

  6. Contamine, V. and Picard, M. (2000) Maintenance and integrity of the mitochondrial genome:a plethora of nuclear genes in the budding yeast. Microbiol. Rev. 64, 281–315.

    CAS  Google Scholar 

  7. Foury, F. (1989) Cloning and sequencing of the nuclear gene MIP1 encoding the catalytic subunit of the yeast mitochondrial DNA polymerase. J. Biol. Chem. 264, 20,552–20,560.

    PubMed  CAS  Google Scholar 

  8. Van Dyck, E., Foury, F., Stillman, B., and Brill, S.J. (1992) A single-stranded DNA binding protein required for mitochondrial DNA replication in S. cerevisiae is homologous to E. coli SSB. EMBO J. 11, 3421–3430.

    PubMed  Google Scholar 

  9. Greenleaf, A. L., Kelly, J. L., and Lehman, I. R. (1986) Yeast RPO41 gene is required for transcription and maintenance of the mitochondrial genome. Proc. Natl. Acad. Sci. USA 83, 3391–3394.

    Article  PubMed  CAS  Google Scholar 

  10. Newlon, C. S. and Fangman, W. L. (1975) Mitochondrial DNA synthesis in cell cycle mutants of Saccharomyces cerevisiae. Cell 5, 423–428.

    Article  PubMed  CAS  Google Scholar 

  11. Elledge, S. J. and Davis, R. W. (1987) Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability. Mol. Cell. Biol. 7, 2783–2793.

    PubMed  CAS  Google Scholar 

  12. Wang, P. J., Chabes, A., Casagrande, R., Tian, X. C., Thelander, L., and Huffaker, T. C. (1997) Rnr4p, a novel ribonucleotide reductase small subunit protein. Mol. Cell. Biol. 17, 6114–6121.

    PubMed  CAS  Google Scholar 

  13. Willer, M., Rainey, M., Pullen, T., and Stirling, C. J. (2000) The yeast CDC9 gene encodes both a nuclear and a mitochondrial form of DNA ligase I. Curr. Biol. 9, 1085–1094.

    Article  Google Scholar 

  14. Donahue, S. L., Corner, B. E., Bordone, L., and Campbell, C. (2001) Mitochondrial DNA ligase function in Saccharomyces cerevisiae. Nucleic Acids Res. 29, 1582–1589.

    Article  PubMed  CAS  Google Scholar 

  15. Burns, N., Grimwade, B., Ross-Macdonald, P. B., Choi, E-Y., Finberg, K., Roeder, G. S., et al. (1994) Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 8, 1087–1105.

    Article  PubMed  CAS  Google Scholar 

  16. Kumar, A., Cheung, K-H., Tosches, N., et al. (2002) The TRIPLES database: a community resource for yeast molecular biology. Nucl. Acids Res. 30, 73–75.

    Article  PubMed  CAS  Google Scholar 

  17. Conde, J. and Fink, G. R. (1976) A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc. Natl. Acad. Sci. USA 73, 3651–3655.

    Article  PubMed  CAS  Google Scholar 

  18. Macino, G. and Tzagoloff, A. (1979) Assembly of the mitochondrial membrane system: partial sequence of a mitochondrial ATPase gene in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 76, 131–135.

    Article  PubMed  CAS  Google Scholar 

  19. Genga, A., Bianchi, L., and Foury, F. (1986) A nuclear mutant of Saccharomyces cerevisiae deficient in mitochondrial DNA replication and polymerase activity. J. Biol. Chem. 261, 9328–9332.

    PubMed  CAS  Google Scholar 

  20. Foury, A. and Goffeau, A. Genetic control of enhanced mutability of mitochondrial DNA and gamma-ray sensitivity in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 76, 6529–6533.

    Google Scholar 

  21. Ogur, M. and John, R. S. (1956) A differential and diagnostic plating method for population studies of respiration deficiency in yeast. J. Bacteriol. 72, 500.

    PubMed  CAS  Google Scholar 

  22. Sherman, F. and Hicks, J. (1994) Micromanipulation and dissection of asci, in Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology Vol. 194 (Guthrie, C. and Fink, G. R.,eds.), Academic, New York, pp. 21–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Foury, F. (2002). Yeast Nuclear Genes for mtDNA Maintenance. In: Copeland, W.C. (eds) Mitochondrial DNA. Methods in Molecular Biology™, vol 197. Humana Press. https://doi.org/10.1385/1-59259-284-8:139

Download citation

  • DOI: https://doi.org/10.1385/1-59259-284-8:139

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-972-8

  • Online ISBN: 978-1-59259-284-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation