Computational Methods in Flavin Research

  • Protocol
Flavoprotein Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 131))

  • 1411 Accesses

Abstract

With the continuously increasing power of computers, quantum chemistry is becoming a valuable theoretical tool in enzyme research. Molecules as large as flavins can now be treated by computational methods of reasonable theoretical level. The present chapter focuses on the possibilities and restrictions of some quantum chemical methods with respect to research on the chemistry of flavin cofactors in enzyme catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foresman, J. B. and Frisch, Æ. (1996) Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., Pittsburgh, PA.

    Google Scholar 

  2. Field, M. J., Bash, P. A., and Karplus, M. J. (1990) A Combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comp. Chem. 11, 700–733.

    Article  CAS  Google Scholar 

  3. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., and Stewart, J. J. P. (1985) AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909.

    Article  CAS  Google Scholar 

  4. Stewart, J. J. P. (1989) Optimization of parameters for semiempirical methods. I. method. J. Comp. Chem. 10, 209–220.

    Article  CAS  Google Scholar 

  5. Cnubben, N. H. P., Peelen, S., Borst, J. W., Vervoort, J., Veeger, C., and Rietjens, I. M. C. M. (1994) Molecular orbital based quantitative structure-activity relationship for the cytochrome P450-catalyzed 4-hydroxylation of halogenated anilines. Chem. Res. Toxicol. 7, 590–598.

    Article  PubMed  CAS  Google Scholar 

  6. Peelen, S., Rietjens, I. M. C. M., Boersma, M. G., and Vervoort, J. (1995) Conversion of phenol derivatives to hydroxylated products by phenol hydroxylase from Trichosporon cutaneum; a comparison of regioselectivity and rate of conversion with calculated molecular orbital substrate characteristics. Eur. J. Biochem. 227, 284–291.

    Article  PubMed  CAS  Google Scholar 

  7. Van Haandel, M. J. H., Rietjens, I. M. C. M., Soffers, A. E. M. F., Veeger, C., Vervoort, J., Modi, S., Mondal, M. S., Patel, P. K., and Behere, D. V. (1996) Computer calculation-based quantitative structure-activity relationships for the oxidation of phenol derivatives by horseradish peroxidase compound II. J. B. I. C. 1, 460–467.

    Google Scholar 

  8. Soffers, A. E. M. F., Ploemen, J. H. T. M., Moonen, M. J. H., Wobbes, T., Van Ommen, B., Vervoort, J., Van Bladeren, P. J., and Rietjens, I. M. C. M. (1996) Regioselectivity and quantitative structure-activity relationships for the conjugation of a series of fluoronitrobenzenes by purified glutathione S-transferase enzymes from rat and man, Chem. Res. Toxicol. 9, 638–646.

    Article  PubMed  CAS  Google Scholar 

  9. Eckstein, J. W., Hastings, J. W., and Ghisla, S. (1993) Mechanism of bacterial bioluminescence: 4a,5-dihydroflavin analogs as models for luciferase hydroper-oxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics. Biochemistry 32, 404–411.

    Article  PubMed  CAS  Google Scholar 

  10. Ortiz Maldonado, M., Ballou, D. P., and Massey, V. (1997) Leaving group tendencies of 8-substituted flavin-C4a-alkoxides and the mechanism of hydroxyla-tion catalyzed by p-hydroxybenzoate hydroxylase, in Flavins and flavoproteins, University of Calgary Press, Calgary, Alberta, Canada, pp. 323–326.

    Google Scholar 

  11. Hasford, J. J. and Rizzo, C. J. (1998) Linear free energy substituent effect on flavin redox chemistry. J. Am. Chem. Soc. 120, 2251–2255.

    Article  CAS  Google Scholar 

  12. Ridder, L., Mulholland, A. J., Vervoort, J., and Rietjens, I. M. C. M. (1998) Correlation of calculated activation energies with experimental rate constants for an enzyme catalyzed aromatic hydroxylation. J. Am. Chem. Soc. 120, 7641–7642.

    Article  CAS  Google Scholar 

  13. Husain, M., Entsch, B., Ballou, D. P., Massey, V., and Chapman, J. P. (1980) Fluoride elimination from substrates in hydroxylation reactions catalyzed by p-hydroxybenzoate hydroxylase J. Biol. Chem. 255, 4189–4197.

    PubMed  CAS  Google Scholar 

  14. Vervoort, J., Rietjens, I. M. C. M., Berkel, W. J. H. van, and Veeger, C. (1992) Frontier orbital study on the 4-hydroxybenzoate-3-hydroxylase dependent activity with benzoate derivatives. Eur. J. Biochem. 206, 479–484.

    Article  PubMed  CAS  Google Scholar 

  15. Zuilhof, H., Lodder, G., and Koch, H. F. (1997) Carbon-oxygen hydrogen-bonding in dehydrohalogenation reactions: PM3 calculations on polyhalogenated phenylethane derivatives. J. Org. Chem. 62, 7457–7463.

    Article  PubMed  CAS  Google Scholar 

  16. Jurema, M. W. and Shields, G. C. (1993) Ability of the PM3 quantum-mechanical method to model intermolecular hydrogen bonding between neutral molecules. J. Comp. Chem. 14, 89–104.

    Article  CAS  Google Scholar 

  17. Koch, H. F., Mishima, M., and Zuilhof, H. (1998) Proton transfer between carbon acids and methoxide: studies in methanol, the gas phase and ab initio MO calculations. Ber. Bunsenges. Phys. Chem. 102, 567–572.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ridder, L., Zuilhof, H., Vervoort, J., Rietjens, I.M.C.M. (1999). Computational Methods in Flavin Research. In: Chapman, S.K., Reid, G.A. (eds) Flavoprotein Protocols. Methods in Molecular Biology, vol 131. Humana Press. https://doi.org/10.1385/1-59259-266-X:207

Download citation

  • DOI: https://doi.org/10.1385/1-59259-266-X:207

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-734-2

  • Online ISBN: 978-1-59259-266-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation