Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 55))

Abstract

Numerous techniques have been developed to transfer genes into plants to create genetically engineered crops that can tolerate environmental stresses, and to improve productivity and quality. The search for easier, more efficient techniques to transfer genes continues because the efficiencies of current techniques are low and recovering fertile transgenic plants is difficult and time consuming with some plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 99.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hess, D. (1987) Pollen-based techniques in genetic manipulation. Inter. Rev. Cytol. 107, 367–395.

    Article  Google Scholar 

  2. De Wet, J. M. J., Bergquist, R. R., Harlan, J. F., Brink, D. E., Cohen, C. E., Newell, C. A., and De Wet, A.-E. (1985) Exogenous gene transfer in maize (Zea mays) using DNA-treated pollen, in Experimental Manipulation of Ovule Tissues. (Chapman, G. P., Mantell, S. H., and Daniels, R. W., eds.) Longman, London, pp. 197–209.

    Google Scholar 

  3. Ohta, Y. (1986) High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc. Natl. Acad. Sci. USA 83, 715–719.

    Article  PubMed  CAS  Google Scholar 

  4. Pandey, K. K. (1978) Gametic gene transfer in Nicotiana by means of irradiated pollen. Genetica 49, 53–69.

    Article  Google Scholar 

  5. Pandey, K. K. (1980) Further evidence for egg transformation in Nicotiana. Heredity 45, 15–29.

    Article  Google Scholar 

  6. Sanford, J. C., Skubik, K. A., and Reisch, B. I. (1985) Attempted pollen-mediated plant transformation employing genomic donor DNA. Theor. Appl. Genet. 69, 571–574.

    Article  CAS  Google Scholar 

  7. Matousek, J. and Tupy, J. (1983) The release of nucleases from tobacco pollen. Plant Sci. Lett. 30, 83–89.

    Article  CAS  Google Scholar 

  8. Roeckel, P., Heizmann, P., Dubois, M., and Dumas, C. (1988) Attempts to transform Zea mays via pollen grains, effect of pollen and stigma nuclease activities. Sex Plant Reprod. 1, 156–163.

    Article  Google Scholar 

  9. Abdul-Baki, A. A., Saunders, J. A., Matthews, B. F., and Pittarelli, G. W. (1990) DNA uptake by electroporation of germinating pollen grains. Plant Sci. 70, 181–190.

    Article  CAS  Google Scholar 

  10. Matthews, B. F., Abdul-Baki, A. A., and Saunders, J. A. (1990) Expresston of a foreign gene in electroporated pollen grains of tobacco. Sex Plant Reprod. 3, 147–151.

    Article  Google Scholar 

  11. Smith, C. R., Saunders, J. A., Van Wert, S., Cheng, J., and Matthews, B. F. (1994) Expression of GUS and CAT activities using electrotransformed pollen. Plant Sci. 104, 49–58.

    Article  CAS  Google Scholar 

  12. Van Wert, S. L. and Saunders J. A. (1992) Reduction of nuclease activity released from germinating pollen under conditions used for pollen electrotransformation. Plant Sci. 84, 11–16.

    Article  Google Scholar 

  13. Dickinson, D. B. (1968) Rapid starch synthesis associated with increased respiration in germinating lily pollen. Plant Phys. 43, 1–8.

    Article  CAS  Google Scholar 

  14. Matousek, J. and Tupy, J. (1984) Purification and properties of extracellular nuclease from tobacco pollen. Bio. Plantarum 26, 62–73.

    Article  CAS  Google Scholar 

  15. Saunders, J. A., Lin, C. H., Cheng, J., Tsengwa, N., Lin, J. J., Smith, C. R., McIntosh, M., and Wert, S. V. (1994) Rapid optimization of electroporation conditions for plant cells, protoplasts, and pollen. Mol. Biotechnol. (in press).

    Google Scholar 

  16. Saunders, J. A., Roskos, L. A., Mischke, B. S., Aly, M., and Owens, L. D. (1986) Behavior and viability of tobacco protoplasts in response to electrofusion parameters. Plant Physiol. 80, 117–121.

    Article  PubMed  CAS  Google Scholar 

  17. Abdul-Baki, A. A. (1992) Determination of pollen viability in tomatoes. J. Am. Soc. Hort. Sci. 117(3), 473–476.

    Google Scholar 

  18. Fromm, M., Taylor, L. P., and Walbot, V. (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. USA 82, 5824–5828.

    Article  PubMed  CAS  Google Scholar 

  19. Fromm, M. E., Taylor, L. P., and Walbot, V. (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319, 791–793.

    Article  PubMed  CAS  Google Scholar 

  20. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Inhibition of gene expression in plant cells by expression of antisense RNA. EMBO J. 1, 841–845.

    PubMed  CAS  Google Scholar 

  21. Wong, T. K. and Neumann, E. (1982) Electric field mediated gene transfer. Biochem. Biophys. Res. Comm. 107, 584–587.

    Article  PubMed  CAS  Google Scholar 

  22. Potter, H., Weir, L., and Leder, P. (1984) Enhancer-dependent expression of human κ immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc. Natl. Acad. Sci. USA 81, 7161–7165.

    Article  PubMed  CAS  Google Scholar 

  23. Weber, H., Forester, W., and Jacob, H. E. (1981) Parasexual hybridization of yeasts by electric field stimulated fusion of protoplasts. Curr. Genet. 4, 165,166.

    Article  Google Scholar 

  24. Saunders, J. A., Matthews, B. F., and Van Wert, S. L. (1991) Pollen electrotransformation for gene transfer in plants, in Guide to Electroporation and Electrofusion. (Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E., eds.), Academic, San Diego, CA, pp. 227–247.

    Google Scholar 

  25. Saunders, J. A., Matthews, B. F., and Miller, P. D. (1989) Plant gene transfer using electrofusion and electroporation, in Electroporation and Electrofusion in Cell Biology. (Neumann, E., Sowers, A., and Jordan, C., eds.) Plenum, New York, pp. 343–354.

    Google Scholar 

  26. Liang, H., Purucker, W. J., Stenger, D. A., Kubiniec, R. T., and Hui, S. W. (1988) Uptake of fluorescence-labeled dextrans by 10T 1/2 fibroblasts following permeation by rectangular and exponential electric field pulses. BioTechniques 6, 550–558.

    PubMed  CAS  Google Scholar 

  27. Benz, R., Zimmermann, U., and Wecker, E. (1981) High electric fields effects on the cell membranes of Halicystis parvula: a charge-pulse study. Planta 152, 314–318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Saunders, J.A., Matthews, B.F. (1995). Pollen Electrotransformation in Tobacco. In: Nickoloff, J.A. (eds) Plant Cell Electroporation and Electrofusion Protocols. Methods in Molecular Biology™, vol 55. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-328-7:81

Download citation

  • DOI: https://doi.org/10.1385/0-89603-328-7:81

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-328-3

  • Online ISBN: 978-1-59259-542-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation