Use of Necrotic Markers in the Drosophila Ovary

  • Protocol
  • First Online:
Necrosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1004))

Abstract

Necrosis is a form of cell death characterized by cytoplasmic and organelle swelling, compromised ­membrane integrity, intracellular acidification, and increased levels of reactive oxygen species (ROS) and cytosolic Ca2+. In the Drosophila ovary, two distinct forms of cell death occur naturally. In response to starvation, caspase-dependent cell death occurs during mid-oogenesis. Additionally, the nurse cells, which support the develo** oocyte, undergo developmental programmed cell death during late oogenesis after they dump their contents into the oocyte. Evidence suggests that necrosis may be playing an important role during developmental programmed cell death of the nurse cells during late oogenesis. Here, we describe several methods to detect events associated with necrosis in the Drosophila ovary. Propidium iodide is used to detect cells with compromised membrane integrity, and H2DCFDA is used as an indicator of ROS levels in a cell. In addition, LysoTracker detects intracellular acidification and X-rhod-1 detects cytosolic Ca2+. We also describe transgenic methods to detect Ca2+ levels and expression patterns. These methods performed in the Drosophila ovary, as well as other tissues, may lead to a further understanding of the mechanisms of necrosis as a form of programmed cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  Google Scholar 

  2. Kroemer G et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    Article  CAS  Google Scholar 

  3. McCall K (2010) Genetic control of necrosis—another type of programmed cell death. Curr Opin Cell Biol 22:882–888

    Article  CAS  Google Scholar 

  4. Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32:37–43

    Article  CAS  Google Scholar 

  5. Schulze C et al (2008) Clearance deficiency—a potential link between infections and autoimmunity. Autoimmun Rev 8:5–8

    Article  CAS  Google Scholar 

  6. Ribble D et al (2005) A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 5:12

    Article  Google Scholar 

  7. Spradling AC (1993) Developmental genetics of oogenesis. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1–70

    Google Scholar 

  8. King RC (1970) Ovarian development in Drosophila melanogaster. Academic, New York

    Google Scholar 

  9. Pritchett TL, Tanner EA, McCall K (2009) Cracking open cell death in the Drosophila ovary. Apoptosis 14:969–979

    Article  Google Scholar 

  10. McCall K (2004) Eggs over easy: cell death in the Drosophila ovary. Dev Biol 274:3–14

    Article  CAS  Google Scholar 

  11. Giorgi F, Deri P (1976) Cell death in ovarian chambers of Drosophila melanogaster. J Embryol Exp Morphol 35:521–533

    CAS  PubMed  Google Scholar 

  12. Bass BP et al (2009) Cell-autonomous requirement for DNaseII in nonapoptotic cell death. Cell Death Differ 16:1362–1371

    Article  CAS  Google Scholar 

  13. Hou YC et al (2008) Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis. J Cell Biol 182:1127–1139

    Article  CAS  Google Scholar 

  14. Nezis IP et al (2009) Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy. Autophagy 5:298–302

    Article  CAS  Google Scholar 

  15. Campbell SD, Hilliker AJ, Phillips JP (1986) Cytogenetic analysis of the cSOD microregion in Drosophila melanogaster. Genetics 112:205–215

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tian L et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  CAS  Google Scholar 

  17. Goentoro LA et al (2006) Quantitative analysis of the GAL4/UAS system in Drosophila oogenesis. Genesis 44:66–74

    Article  CAS  Google Scholar 

  18. Manseau L et al (1997) GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev Dyn 209:310–322

    Article  CAS  Google Scholar 

  19. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461

    Article  CAS  Google Scholar 

  20. Morin X et al (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci USA98:15050–15055

    Article  CAS  Google Scholar 

  21. Darzynkiewicz Z et al (1992) Features of apoptotic cells measured by flow cytometry. Cytometry 13:795–808

    Article  CAS  Google Scholar 

  22. Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:14S–22S

    Article  CAS  Google Scholar 

  23. Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757:1371–1387

    Article  CAS  Google Scholar 

  24. Covarrubias L et al (2008) Function of reactive oxygen species during animal development: passive or active? Dev Biol 320:1–11

    Article  CAS  Google Scholar 

  25. Phillips JP et al (1989) Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci USA86:2761–2765

    Article  CAS  Google Scholar 

  26. Phillips JP et al (1995) Subunit-destabilizing mutations in Drosophila copper/zinc superoxide dismutase: neuropathology and a model of dimer dysequilibrium. Proc Natl Acad Sci USA 92:8574–8578

    Article  CAS  Google Scholar 

  27. Liu Z et al (2012) Genetically encoded redox sensor identifies the role of ROS in degenerative and mitochondrial disease pathogenesis. Neurobiol Dis 45:362–368

    Article  CAS  Google Scholar 

  28. Hanson GT et al (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053

    Article  CAS  Google Scholar 

  29. Kanda H et al (2011) Conserved metabolic energy production pathways govern Eiger/TNF-induced nonapoptotic cell death. Proc Natl Acad Sci USA108:18977–18982

    Article  CAS  Google Scholar 

  30. Karlsson M et al (2010) What does the commonly used DCF test for oxidative stress really show? Biochem J 428:183–190

    Article  CAS  Google Scholar 

  31. Owusu-Ansah E, Yavari A, Banerjee U (2008) A protocol for in vivo detection of Reactive Oxygen Species. Nat Protoc Exch. doi:10.1038/nprot.2008.23

    Article  Google Scholar 

  32. Klionsky DJ et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    Article  CAS  Google Scholar 

  33. Matova N et al (1999) Drosophila Quail, a villin-related protein, bundles actin filaments in apoptotic nurse cells. Development 126:5645–5657

    CAS  PubMed  Google Scholar 

  34. Dawson-Scully K et al (2000) Cysteine-string protein increases the calcium sensitivity of neurotransmitter exocytosis in Drosophila. J Neurosci 20:6039–6047

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank our lab members for helpful suggestions and comments on the manuscript. We thank the Blooming Drosophila Stock Center and Trudi Schüpbach for fly strains described here. Our research is supported by NIH grants R01 GM060574 and R01 GM094452.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Timmons, A.K., Meehan, T.L., Gartmond, T.D., McCall, K. (2013). Use of Necrotic Markers in the Drosophila Ovary. In: McCall, K., Klein, C. (eds) Necrosis. Methods in Molecular Biology, vol 1004. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-383-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-383-1_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-382-4

  • Online ISBN: 978-1-62703-383-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation