Using Coevolution to Predict Protein–Protein Interactions

  • Protocol
  • First Online:
Network Biology

Abstract

Bioinformatic methods to predict protein–protein interactions (PPI) via coevolutionary analysis have ­positioned themselves to compete alongside established in vitro methods, despite a lack of understanding for the underlying molecular mechanisms of the coevolutionary process. Investigating the alignment of coevolutionary predictions of PPI with experimental data can focus the effective scope of prediction and lead to better accuracies. A new rate-based coevolutionary method, MMM, preferentially finds obligate interacting proteins that form complexes, conforming to results from studies based on coimmunoprecipitation coupled with mass spectrometry. Using gold-standard databases as a benchmark for accuracy, MMM surpasses methods based on abundance ratios, suggesting that correlated evolutionary rates may yet be better than coexpression at predicting interacting proteins. At the level of protein domains, ­coevolution is difficult to detect, even with MMM, except when considering small-scale experimental data involving proteins with multiple domains. Overall, these findings confirm that coevolutionary ­methods can be confidently used in predicting PPI, either independently or as drivers of coimmunoprecipitation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fraser HB, Wall DP, and Hirsh AE (2003) A simple dependence between protein evolution rate and the number of protein–protein interactions, BMC Evol Biol 3, 11.

    Article  PubMed  Google Scholar 

  2. Krylov DM, Wolf YI, Rogozin IB, and Koonin EV (2003) Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution, Genome Res 13, 2229–2235.

    Article  PubMed  CAS  Google Scholar 

  3. Tillier ERM, and Charlebois RL (2009) The human protein coevolution network, Genome Res 19, 1861–1871.

    Article  PubMed  CAS  Google Scholar 

  4. Pazos F, and Valencia A (2001) Similarity of phylogenetic trees as indicator of protein–protein interaction, Protein Eng 14, 609–614.

    Article  PubMed  CAS  Google Scholar 

  5. Atchley WR, Wollenberg KR, Fitch WM, Terhalle W, and Dress AW (2000) Correlations among amino acid sites in bHLH protein domains: an information theoretic analysis, Mol Biol Evol 17, 164–178.

    PubMed  CAS  Google Scholar 

  6. Bloom JD, Lu Z, Chen D, Raval A, Venturelli OS, and Arnold FH (2007) Evolution favors protein mutational robustness in sufficiently large populations, BMC Biol 5, 29.

    Article  PubMed  Google Scholar 

  7. Worth CL, Gong S, and Blundell TL (2009) Structural and functional constraints in the evolution of protein families, Nat Rev Mol Cell Biol 10, 709–720.

    PubMed  CAS  Google Scholar 

  8. Singer MS, Vriend G, and Bywater RP (2002) Prediction of protein residue contacts with a PDB-derived likelihood matrix, Protein Eng 15, 721–725.

    Article  PubMed  CAS  Google Scholar 

  9. Saraf MC, Moore GL, and Maranas CD (2003) Using multiple sequence correlation analysis to characterize functionally important protein regions, Protein Eng 16, 397–406.

    Article  PubMed  CAS  Google Scholar 

  10. Tillier ERM, Biro L, Li G, and Tillo D (2006) Codep: maximizing coevolutionary interdependencies to discover interacting proteins, Proteins 63, 822–831.

    Article  PubMed  CAS  Google Scholar 

  11. Choi SS, Li W, and Lahn BT (2005) Robust signals of coevolution of interacting residues in mammalian proteomes identified by phylogeny-aided structural analysis, Nat Genet 37, 1367–1371.

    Article  PubMed  CAS  Google Scholar 

  12. Tress ML, and Valencia A (2010) Predicted residue-residue contacts can help the scoring of 3D models, Proteins 78, 1980–1991.

    PubMed  CAS  Google Scholar 

  13. Horner DS, Pirovano W, and Pesole G (2008) Correlated substitution analysis and the prediction of amino acid structural contacts, Brief Bioinform 9, 46–56.

    Article  PubMed  CAS  Google Scholar 

  14. Pazos F, and Valencia A (2002) In silico two-hybrid system for the selection of physically interacting protein pairs, Proteins 47, 219–227.

    Article  PubMed  CAS  Google Scholar 

  15. Xu Y, and Tillier ERM (2010) Regional covariation and its application for predicting protein contact patches, Proteins 78, 548–558.

    Article  PubMed  CAS  Google Scholar 

  16. Goh CS, Bogan AA, Joachimiak M, Walther D, and Cohen FE (2000) Coevolution of proteins with their interaction partners, J Mol Biol 299, 283–293.

    Article  PubMed  CAS  Google Scholar 

  17. Aytuna AS, Gursoy A, and Keskin O (2005) Prediction of protein–protein interactions by combining structure and sequence conservation in protein interfaces, Bioinformatics 21, 2850–2855.

    Article  PubMed  CAS  Google Scholar 

  18. Sato T, Yamanishi Y, Kanehisa M, and Toh H (2005) The inference of protein–protein interactions by coevolutionary analysis is improved by excluding the information about the phylogenetic relationships, Bioinformatics 21, 3482–3489.

    Article  PubMed  CAS  Google Scholar 

  19. Hakes L, Lovell SC, Oliver SG, and Robertson DL (2007) Specificity in protein interactions and its relationship with sequence diversity and coevolution, Proc Natl Acad Sci USA 104, 7999–8004.

    Article  PubMed  CAS  Google Scholar 

  20. Craig RA, and Liao L (2007) Phylogenetic tree information aids supervised learning for predicting protein–protein interaction based on distance matrices, BMC Bioinformatics 8, 6.

    Article  PubMed  Google Scholar 

  21. Kann MG, Jothi R, Cherukuri PF, and Przytycka TM (2007) Predicting protein domain interactions from coevolution of conserved regions, Proteins 67, 811–820.

    Article  PubMed  CAS  Google Scholar 

  22. Juan D, Pazos F, and Valencia A (2008) Coevolution and co-adaptation in protein networks, FEBS Lett 582, 1225–1230.

    Article  PubMed  CAS  Google Scholar 

  23. Barabasi AL, and Albert R (1999) Emergence of scaling in random networks, Science 286, 509–512.

    Article  PubMed  Google Scholar 

  24. Rodionov A, Bezginov A, Rose J, and Tillier ERM (2011) A new, fast algorithm for detecting protein coevolution using maximum compatible cliques, Algorithms Mol Biol 6, 17.

    Article  PubMed  Google Scholar 

  25. Pazos F, and Valencia A (2008) Protein coevolution, co-adaptation and interactions, EMBO J 27, 2648–2655.

    Article  PubMed  CAS  Google Scholar 

  26. Mintseris J, and Weng Z (2005) Structure, function, and evolution of transient and obligate protein–protein interactions, Proc Natl Acad Sci USA 102, 10930–10935.

    Article  PubMed  CAS  Google Scholar 

  27. Drummond DA, Bloom JD, Adami C, Wilke CO, and Arnold FH (2005) Why highly expressed proteins evolve slowly, Proc Natl Acad Sci USA 102, 14338–14343.

    Article  PubMed  CAS  Google Scholar 

  28. Rocha EP, and Danchin A (2004) An analysis of determinants of amino acids substitution rates in bacterial proteins, Mol Biol Evol 21, 108–116.

    Article  PubMed  CAS  Google Scholar 

  29. Papp B, Pál C, and Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast, Nature 424, 194–197.

    Article  PubMed  CAS  Google Scholar 

  30. Kann MG, Shoemaker BA, Panchenko AR, and Przytycka TM (2009) Correlated evolution of interacting proteins: looking behind the mirrortree, J Mol Biol 385, 91–98.

    Article  PubMed  CAS  Google Scholar 

  31. Dandekar T, Snel B, Huynen M, and Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact, Trends Biochem Sci 23, 324–328.

    Article  PubMed  CAS  Google Scholar 

  32. Huynen M, Snel B, Lathe W, and Bork P (2000) Predicting protein function by genomic context: quantitative evaluation and qualitative inferences, Genome Res 10, 1204–1210.

    Article  PubMed  CAS  Google Scholar 

  33. Sharp PM, and Li WH (1987) The codon Adaptation Index–a measure of directional synonymous codon usage bias, and its potential applications, Nucleic Acids Res 15, 1281–1295.

    Article  PubMed  CAS  Google Scholar 

  34. Fraser HB, Hirsh AE, Wall DP, and Eisen MB (2004) Coevolution of gene expression among interacting proteins, Proc Natl Acad Sci USA 101, 9033–9038.

    Article  PubMed  CAS  Google Scholar 

  35. Matthews LR, Vaglio P, Reboul J, Ge H, Davis BP, Garrels J, Vincent S, and Vidal M (2001) Identification of potential interaction networks using sequence-based searches for conserved protein–protein interactions or “interologs,” Genome Res 11, 2120–2126.

    Article  PubMed  CAS  Google Scholar 

  36. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, and Bork P (2002) Comparative assessment of large-scale data sets of protein–protein interactions, Nature 417, 399–403.

    Article  Google Scholar 

  37. Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, Hirozane-Kishikawa T, Gebreab F, Li N, Simonis N, Hao T, Rual JF, Dricot A, Vazquez A, Murray RR, Simon C, Tardivo L, Tam S, Svrzikapa N, Fan C, de Smet AS, Motyl A, Hudson ME. Park J, **n X, Cusick ME, Moore T, Boone C, Snyder M, Roth FP, Barabási AL, Tavernier J, Hill DE, and Vidal M (2008) High-quality binary protein interaction map of the yeast interactome network, Science 322, 104–110.

    Google Scholar 

  38. Nooren IMA, and Thorton JM (2003) Diversity of protein–protein interactions, The EMBO Journal 22.

    Google Scholar 

  39. Wuchty S, Barabási AL, and Ferdig MT (2006) Stable evolutionary signal in a yeast protein interaction network, BMC Evol Biol 6, 8.

    Article  PubMed  Google Scholar 

  40. Yellaboina S, Dudekula DB, and Ko MSh (2008) Prediction of evolutionarily conserved interologs in Mus musculus, BMC Genomics 9, 465.

    Article  PubMed  Google Scholar 

  41. Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA (1998) Cell 95, 717–728.

    Article  PubMed  CAS  Google Scholar 

  42. Pawson T, and Nash P (2003) Assembly of cell regulatory systems through protein interaction domains, Science 300, 445–452.

    Article  PubMed  CAS  Google Scholar 

  43. del Sol A, and Carbonell P (2007) The ­modular organization of domain structures: insights into protein–protein binding, PLoS Comput Biol 3, e239.

    Article  PubMed  Google Scholar 

  44. Itzhaki Z, Akiva E, Altuvia Y, and Margalit H (2006) Evolutionary conservation of domain–domain interactions, Genome Biol 7, R125.

    Article  PubMed  Google Scholar 

  45. Kim Y, Koyutürk M, Topkara U, Grama A, and Subramaniam S (2006) Inferring functional information from domain coevolution, Bioinformatics 22, 40–49.

    Article  PubMed  CAS  Google Scholar 

  46. Jothi R, Cherukuri, PF, Tasneem A, and Przytycka TM (2006) Coevolutionary analysis of domains in interacting proteins reveals insights into domain–domain interactions mediating protein–protein interactions, J Mol Biol 362, 861–875.

    Article  PubMed  CAS  Google Scholar 

  47. Wojcik J, and Schächter V (2001) Protein–protein interaction map inference using interacting domain profile pairs, Bioinformatics 17 Suppl 1, S296–S305.

    Article  PubMed  Google Scholar 

  48. Wagner A (2001) The Yeast Protein Interaction Network Evolves Rapidly and Contains Few Redundant Duplicate Genes, Mol Biol Evol 18, 1283–1292.

    PubMed  CAS  Google Scholar 

  49. Berg J, Lässig M, and Wagner A (2004) Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications, BMC Evol Biol 4, 51.

    Article  PubMed  Google Scholar 

  50. Katoh K, Kuma K, Miyata T, and Toh H (2005) Improvement in the accuracy of multiple sequence alignment program MAFFT, Genome Inform 16, 22–33.

    PubMed  CAS  Google Scholar 

  51. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. University of Washington, Seattle.

    Google Scholar 

  52. Veerassamy S, Smith A, and Tillier ERM (2003) A transition probability model for amino acid substitutions from blocks, J Comput Biol 10, 997–1010.

    Article  PubMed  CAS  Google Scholar 

  53. Altschul SF, Gish W, Miller W, Myers EW, and Lipman DJ (1990) Basic Local Alignment Search Tool, Journal of Molecular Biology 215.

    Google Scholar 

  54. Schneider A, Dessimoz C, and Gonnet GH (2007) OMA Browser–exploring orthologous relations across 352 complete genomes, Bioinformatics 23, 2180–2182.

    Article  PubMed  CAS  Google Scholar 

  55. Nuin PA, Wang Z, and Tillier ERM (2006) The accuracy of several multiple sequence alignment programs for proteins, BMC Bioinformatics 7, 471.

    Article  PubMed  Google Scholar 

  56. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, and Tyers M (2006) BioGRID: a general repository for interaction datasets, Nucleic Acids Res 34, D535–D539.

    Article  PubMed  CAS  Google Scholar 

  57. Gong Y, Kakihara Y, Krogan N, Greenblatt J, Emili A, Zhang Z, and Houry W (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell, Mol Sys Biol 5, 275.

    Google Scholar 

  58. Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, Lin ZY, Breitkreutz BJ, Stark C, Liu G, Ahn J, Dewar-Darch D, Reguly T, Tang X, Almeida R, Qin ZS, Pawson T, Gingras AC, Nesvizhskii AI, and Tyers M (2010) A global protein kinase and phosphatase interaction network in yeast, Science 328, 1043–1046.

    Article  PubMed  CAS  Google Scholar 

  59. Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, and Eisenberg D (2000) DIP: the Database of Interacting Proteins, Nucleic Acids Reseach 28, 289–291.

    Article  CAS  Google Scholar 

  60. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, and Pandey A (2009) Human Protein Reference Database–2009 update, Nucleic Acids Res 37, D767–D772.

    Article  PubMed  CAS  Google Scholar 

  61. Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R, Kohler C, Khadake J, Leroy C, Liban A, Lieftink C, Montecchi-Palazzi L, Orchard S, Risse J, Robbe K, Roechert B, Thorneycroft D, Zhang Y, Apweiler R, and Hermjakob H (2007) IntAct–open source resource for molecular interaction data, Nucleic Acids Res 35, D561–D565.

    Article  PubMed  CAS  Google Scholar 

  62. Ceol A, Chatr Aryamontri A, Licata L, Peluso D, Briganti L, Perfetto L, Castagnoli L, and Cesareni G (2010) MINT, the molecular interaction database: 2009 update, Nucleic Acids Res 38, D532–D539.

    Article  PubMed  CAS  Google Scholar 

  63. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Khovayko O, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V, Ostell J, Pruitt KD, Schuler GD, Shumway M, Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Tatusov RL, Tatusova TA, Wagner L, and Yaschenko E (2008) Database resources of the National Center for Biotechnology Information, Nucleic Acids Res 36, D13–D21.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded in part by the Ontario Ministry of Health and Long Term Care. The views expressed do not necessarily reflect those of the Ministry. Funding was also provided by a fellowship from the CIHR Training Program in Protein Folding: Principles and Diseases to GWC, an NSERC USRA to JMY and an NSERC discovery grant to ERMT. ERMT holds a Canada Research Chair in Analytical Genomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth R. M. Tillier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Clark, G.W., Dar, VuN., Bezginov, A., Yang, J.M., Charlebois, R.L., Tillier, E.R.M. (2011). Using Coevolution to Predict Protein–Protein Interactions. In: Cagney, G., Emili, A. (eds) Network Biology. Methods in Molecular Biology, vol 781. Humana Press. https://doi.org/10.1007/978-1-61779-276-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-276-2_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-275-5

  • Online ISBN: 978-1-61779-276-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation