Quantitative Approaches to Amyloid Imaging

  • Protocol
  • First Online:
Molecular Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 680))

Abstract

Alzheimer’s disease (AD), an irreversible, progressive neurodegenerative disorder clinically characterized by memory loss and cognitive decline, is the leading cause of dementia in the elderly, leading invariably to death within 7–10 years after diagnosis. In vivo amyloid imaging with positron emission tomography (PET) is allowing new insights into β-amyloid (Aβ) deposition in the brain, facilitating research into the causes, diagnosis, and future treatment of dementias, where Aβ may play a role. Non-invasive quantification of Aβ burden in the brain with PET has proven useful in the early and differential diagnosis of dementias, showing significantly higher retention in grey matter of AD patients when compared with healthy controls (HC) or patients with frontotemporal lobe degeneration (FTLD). With the advent of new therapeutic strategies aimed at reducing Aβ burden in the brain to potentially prevent or delay functional and irreversible cognitive loss, there is increased interest in develo** agents that allow assessment of Aβ burden in vivo. A key aspect for Aβ burden quantification is the application of compartmental or graphical analyses to the kinetic data in order to obtain quantitative and reproducible statements that allow comparison with other nosological groups, correlation with cognitive or biological parameters, and selection, monitoring, and follow-up of individuals in disease modifying therapeutic trials. It is also a necessary step in the validation of simplified approaches that could be applied in routine clinical settings. With the availability of novel amyloid imaging agents radiolabeled with either 11C (half-life 20 min) or 18F (half-life 110 min), a description of different image acquisition approaches is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 126.59
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Masters, C. L., Cappai, R., Barnham, K. J., and Villemagne, V. L. (2006) Molecular mechanisms for Alzheimer’s disease: implications for neuroimaging and therapeutics. J. Neurochem. 97(6), 1700–25.

    Article  PubMed  CAS  Google Scholar 

  2. Bennett, D. A. (2000) Part I. Epidemiology and public health impact of Alzheimer’s disease. Dis. Mon. 46(10), 657–65.

    Article  PubMed  CAS  Google Scholar 

  3. Johnson, N., Davis, T., and Bosanquet, N. (2000) The epidemic of Alzheimer’s disease. How can we manage the costs? Pharmacoeconomics 18(3), 215–23.

    Article  PubMed  CAS  Google Scholar 

  4. Schneider, J., Murray, J., Banerjee, S., and Mann, A. (1999) EUROCARE: a cross-national study of co-resident spouse carers for people with Alzheimer’s disease: I – Factors associated with carer burden. Int. J. Geriatr. Psychiatry 14(8), 651–61.

    Article  PubMed  CAS  Google Scholar 

  5. Selkoe, D. J. (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594), 789–91.

    Article  PubMed  CAS  Google Scholar 

  6. Masters, C. L. (2005) Neuropathology of Alzheimer’s disease. In Dementia, Burns, A., O’Brien, J., and Ames, D., (Eds.), 3rd ed. Hodder Arnold, London, pp. 393–407.

    Google Scholar 

  7. Masters, C. L. and Beyreuther, K. (2005) The neuropathology of Alzheimer’s disease in the year 2005. In Neurodegenerative diseases: neurobiology, pathogenesis and therapeutics, Beal, M. F., Lang, A. E., and Ludolph, A. C., (Eds.). Cambridge University Press, Cambridge, MA, pp. 433–40.

    Chapter  Google Scholar 

  8. Jellinger, K. (1990) Morphology of Alzheimer disease and related disorders. In Alzheimer disease: epidemiology, neuropathology, neurochemistry, and clinics, Maurer, K., Riederer, P., and Beckmann, H., (Eds.). Springer, Berlin, pp. 61–77.

    Chapter  Google Scholar 

  9. Michaelis, M. L., Dobrowsky, R. T., and Li, G. (2002) Tau neurofibrillary pathology and microtubule stability. J. Mol. Neurosci. 19(3), 289–93.

    Article  PubMed  CAS  Google Scholar 

  10. Jellinger, K. A. and Bancher, C. (1998) Neuropathology of Alzheimer’s disease: a critical update. J. Neural. Transm. Suppl. 54, 77–95.

    PubMed  CAS  Google Scholar 

  11. Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and Beyreuther, K. (1985) Amyloid plaque core protein in Alzheimer disease and down syndrome. Proc. Natl. Acad. Sci. USA 82(12), 4245–9.

    Article  PubMed  CAS  Google Scholar 

  12. Cappai, R. and White, A. R. (1999) Amyloid beta. Int. J. Biochem. Cell Biol. 31(9), 885–9.

    Article  PubMed  CAS  Google Scholar 

  13. Villemagne, V. L., Cappai, R., Barnham, K. J., Cherny, R., Opazo, C., Novakovic, K. E., Rowe, C. C., and Masters, C. L. (2006) The Abeta centric pathway of Alzheimer’s disease. In Abeta peptide and Alzheimer’s disease, Barrow, C. J. and Small, B. J., (Eds.). Springer, London, pp. 5–32.

    Google Scholar 

  14. McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, K., Bush, A. I., and Masters, C. L. (1999) Soluble pool of Aß amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46(6), 860–6.

    Article  PubMed  CAS  Google Scholar 

  15. Naslund, J., Haroutunian, V., Mohs, R., Davis, K. L., Davies, P., Greengard, P., and Buxbaum, J. D. (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283(12), 1571–7.

    Article  PubMed  CAS  Google Scholar 

  16. Lue, L. F., Kuo, Y. M., Roher, A. E., Brachova, L., Shen, Y., Sue, L., Beach, T., Kurth, J. H., Rydel, R. E., and Rogers, J. (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am. J. Pathol. 155(3), 853–62.

    Article  PubMed  CAS  Google Scholar 

  17. Wang, J., Dickson, D. W., Trojanowski, J. Q., and Lee, V. M. (1999) The levels of soluble versus insoluble brain Aß distinguish Alzheimer’s disease from normal and pathologic aging. Exp. Neurol. 158(2), 328–37.

    Article  PubMed  CAS  Google Scholar 

  18. Walsh, D. M., Klyubin, I., Shankar, G. M., Townsend, M., Fadeeva, J. V., Betts, V., Podlisny, M. B., Cleary, J. P., Ashe, K. H., Rowan, M. J., et al. (2005) The role of cell-derived oligomers of Abeta in Alzheimer’s disease and avenues for therapeutic intervention. Biochem. Soc. Trans. 33(Pt 5), 1087–90.

    PubMed  CAS  Google Scholar 

  19. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J., and Selkoe, D. J. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880), 535–9.

    Article  PubMed  CAS  Google Scholar 

  20. Petersen, R. C., Stevens, J. C., Ganguli, M., Tangalos, E. G., Cummings, J. L., and DeKosky, S. T. (2001) Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review)-report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56(9), 1133–42.

    Article  PubMed  CAS  Google Scholar 

  21. Petersen, R. C. (2000) Mild cognitive impairment: transition between aging and Alzheimer’s disease. Neurologia 15(3), 93–101.

    PubMed  CAS  Google Scholar 

  22. Petersen, R. C. and Knopman, D. S. (2006) MCI is a clinically useful concept. Int. Psychogeriatr. 18(3), 394–402; discussion 409–314.

    PubMed  Google Scholar 

  23. Selkoe, D. J. (1991) The molecular pathology of Alzheimer’s disease. Neuron 6(4), 487–98.

    Article  PubMed  CAS  Google Scholar 

  24. Hardy, J. A. and Higgins, G. A. (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054), 184–5.

    Article  PubMed  CAS  Google Scholar 

  25. Robinson, S. R. and Bishop, G. M. (2002) The search for an amyloid solution. Science 298(5595), 962–4; author reply 962–964.

    Article  PubMed  Google Scholar 

  26. Hardy, J. (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci. 20(4), 154–9.

    Article  PubMed  CAS  Google Scholar 

  27. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan, E. M. (1984) Clinical Diagnosis of Alzheimer’s Disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34, 939–44.

    Article  PubMed  CAS  Google Scholar 

  28. Masters, C. L. and Beyreuther, K. (2006) Alzheimer’s centennial legacy: prospects for rational therapeutic intervention targeting the Abeta amyloid pathway. Brain 129(Pt 11), 2823–39.

    Article  PubMed  Google Scholar 

  29. Schenk, D., Hagen, M., and Seubert, P. (2004) Current progress in beta-amyloid immunotherapy. Curr. Opin. Immunol. 16(5), 599–606.

    Article  PubMed  CAS  Google Scholar 

  30. Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., et al. (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6(8), 734–46.

    Article  PubMed  Google Scholar 

  31. Selkoe, D. J. (2000) The early diagnosis of Alzheimer’s disease. In The pathophysiology of Alzheimer’s disease, Scinto, L. F. M. and Daffner, K. R., (Eds.). Humana, Totowa, NJ, pp. 83–104.

    Google Scholar 

  32. Villemagne, V. L., Ng, S., Cappai, R., Barnham, K. J., Fodero-Tavoletti, M. T., Rowe, C. C., and Masters, C. L. (2006) La Lunga Attesa: towards a molecular approach to neuroimaging and therapeutics in alzheimer’s disease. Neuroradiol. J. 19, 51–75.

    Google Scholar 

  33. Mathis, C. A., Lopresti, B. J., and Klunk, W. E. (2007) Impact of amyloid imaging on drug development in Alzheimer’s disease. Nucl. Med. Biol. 34(7), 809–22.

    Article  PubMed  CAS  Google Scholar 

  34. Sair, H. I., Doraiswamy, P. M., and Petrella, J. R. (2004) In vivo amyloid imaging in Alzheimer’s disease. Neuroradiology 46(2), 93–104.

    Article  PubMed  CAS  Google Scholar 

  35. Villemagne, V. L., Rowe, C. C., Macfarlane, S., Novakovic, K. E., and Masters, C. L. (2005) Imaginem oblivionis: the prospects of neuroimaging for early detection of Alzheimer’s disease. J. Clin. Neurosci. 12(3), 221–30.

    Article  PubMed  Google Scholar 

  36. Ono, M., Wilson, A., Nobrega, J., Westaway, D., Verhoeff, P., Zhuang, Z. P., Kung, M. P., and Kung, H. F. (2003) 11C-labeled stilbene derivatives as Abeta-aggregate-specific PET imaging agents for Alzheimer’s disease. Nucl. Med. Biol. 30(6), 565–71.

    Article  PubMed  CAS  Google Scholar 

  37. Kung, M. P., Skovronsky, D. M., Hou, C., Zhuang, Z. P., Gur, T. L., Zhang, B., Trojanowski, J. Q., Lee, V. M., and Kung, H. F. (2003) Detection of amyloid plaques by radioligands for Abeta40 and Abeta42: potential imaging agents in Alzheimer’s patients. J. Mol. Neurosci. 20(1), 15–24.

    Article  PubMed  CAS  Google Scholar 

  38. Mathis, C. A., Bacskai, B. J., Kajdasz, S. T., McLellan, M. E., Frosch, M. P., Hyman, B. T., Holt, D. P., Wang, Y., Huang, G. F., Debnath, M. L., et al. (2002) A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg. Med. Chem. Lett. 12(3), 295–8.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang, W., Oya, S., Kung, M. P., Hou, C., Maier, D. L., and Kung, H. F. (2005) F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting Abeta aggregates in the brain. Nucl. Med. Biol. 32(8), 799–809.

    Article  PubMed  CAS  Google Scholar 

  40. Kudo, Y. (2006) Development of amyloid imaging PET probes for an early diagnosis of Alzheimer’s disease. Minim. Invasive Ther. Allied Technol. 15(4), 209–13.

    Article  PubMed  Google Scholar 

  41. Mathis, C. A., Wang, Y., Holt, D. P., Huang, G. F., Debnath, M. L., and Klunk, W. E. (2003) Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J. Med. Chem. 46(13), 2740–54.

    Article  PubMed  CAS  Google Scholar 

  42. Klunk, W. E., Wang, Y., Huang, G. F., Debnath, M. L., Holt, D. P., Shao, L., Hamilton, R. L., Ikonomovic, M. D., DeKosky, S. T., and Mathis, C. A. (2003) The binding of 2-(4-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J. Neurosci. 23(6), 2086–92.

    PubMed  CAS  Google Scholar 

  43. Kung, M. P., Hou, C., Zhuang, Z. P., Skovronsky, D., and Kung, H. F. (2004) Binding of two potential imaging agents targeting amyloid plaques in postmortem brain tissues of patients with Alzheimer’s disease. Brain Res. 1025(1–2), 98–105.

    Article  PubMed  CAS  Google Scholar 

  44. Maezawa, I., Hong, H. S., Liu, R., Wu, C. Y., Cheng, R. H., Kung, M. P., Kung, H. F., Lam, K. S., Oddo, S., Laferla, F. M., et al. (2008) Congo red and thioflavin-T analogs detect Abeta oligomers. J. Neurochem. 104(2), 457–68.

    PubMed  CAS  Google Scholar 

  45. Agdeppa, E. D., Kepe, V., Petri, A., Satyamurthy, N., Liu, J., Huang, S. C., Small, G. W., Cole, G. M., and Barrio, J. R. (2003)In vitro detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer’s brain using the positron emission tomography molecular imaging probe 2-(1-[6-[(2-[(18)F]fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene)malononitrile. Neuroscience 117(3), 723–30.

    Article  PubMed  CAS  Google Scholar 

  46. Barrio, J. R., Huang, S. C., Cole, G., Satyamurthy, N., Petric, A., Phelps, M. E., and Small, G. (1999) PET imaging of tangles and plaques in Alzheimer disease with a highly lipophilic probe. J. Label. Compd. Radiopharm. 42, S194–5.

    Google Scholar 

  47. Shoghi-Jadid, K., Small, G. W., Agdeppa, E. D., Kepe, V., Ercoli, L. M., Siddarth, P., Read, S., Satyamurthy, N., Petric, A., Huang, S. C., et al. (2002) Localisation of neurofibrillary tangles and ß-amyloid plaques in the brains of living patients with Alzheimer’s disease. Am. J. Geriatr. Psychiatry 10(1), 24–35.

    PubMed  Google Scholar 

  48. Small, G. W., Agdeppa, E. D., Kepe, V., Satyamurthy, N., Huang, S. C., and Barrio, J. R. (2002) In vivo brain imaging of tangle burden in humans. J. Mol. Neurosci. 19(3), 323–7.

    Article  PubMed  CAS  Google Scholar 

  49. Small, G. W., Kepe, V., Ercoli, L. M., Siddarth, P., Bookheimer, S. Y., Miller, K. J., Lavretsky, H., Burggren, A. C., Cole, G. M., Vinters, H. V., et al. (2006) PET of brain amyloid and tau in mild cognitive impairment. N. Engl. J. Med. 355(25), 2652–63.

    Article  PubMed  CAS  Google Scholar 

  50. Lee, V. M. (2002) Related Amyloid binding ligands as Alzheimer’s disease therapies. Neurobiol. Aging 23(6), 1039–42.

    Article  PubMed  CAS  Google Scholar 

  51. Marshall, J. R., Stimson, E. R., Ghilardi, J. R., Vinters, H. V., Mantyh, P. W., and Maggio, J. E. (2002) Noninvasive imaging of peripherally injected Alzheimer’s disease type synthetic A beta amyloid in vivo. Bioconjug. Chem. 13(2), 276–84.

    Article  PubMed  CAS  Google Scholar 

  52. Walker, L. C., Price, D. L., Voytko, M. L., and Schenk, D. B. (1994) Labelling of cerebral amyloid in vivo with a monoclonal antibody. J. Neuropathol. Exp. Neurol. 53(4), 377–83.

    Article  PubMed  CAS  Google Scholar 

  53. Poduslo, J. F., Ramakrishnan, M., Holasek, S. S., Ramirez-Alvarado, M., Kandimalla, K. K., Gilles, E. J., Curran, G. L., and Wengenack, T. M. (2007) In vivo targeting of antibody fragments to the nervous system for Alzheimer’s disease immunotherapy and molecular imaging of amyloid plaques. J. Neurochem. 102(2), 420–33.

    Article  PubMed  CAS  Google Scholar 

  54. Shi, J., Perry, G., Berridge, M. S., Aliev, G., Siedlak, S. L., Smith, M. A., LaManna, J. C., and Friedland, R. P. (2002) Labeling of cerebral amyloid beta deposits in vivo using intranasal basic fibroblast growth factor and serum amyloid P component in mice. J. Nucl. Med. 43(8), 1044–51.

    PubMed  CAS  Google Scholar 

  55. Klunk, W. E., Wang, Y., Huang, G. F., Debnath, M. L., Holt, D. P., and Mathis, C. A. (2001) Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci. 69(13), 1471–84.

    Article  PubMed  CAS  Google Scholar 

  56. Mathis, C. A., Klunk, W. E., Price, J. C., and DeKosky, S. T. (2005) Imaging technology for neurodegenerative diseases: progress toward detection of specific pathologies. Arch Neurol. 62(2), 196–200.

    Article  PubMed  Google Scholar 

  57. Ye, L., Morgenstern, J. L., Gee, A. D., Hong, G., Brown, J., and Lockhart, A. (2005) Delineation of positron emission tomography imaging agent binding sites on beta-amyloid peptide fibrils. J. Biol. Chem. 280(25), 23599–604.

    Article  PubMed  CAS  Google Scholar 

  58. Lockhart, A., Ye, L., Judd, D. B., Merritt, A. T., Lowe, P. N., Morgenstern, J. L., Hong, G., Gee, A. D., and Brown, J. (2005) Evidence for the presence of three distinct binding sites for the thioflavin T class of Alzheimer’s disease PET imaging agents on beta-amyloid peptide fibrils. J. Biol. Chem. 280(9), 7677–84.

    Article  PubMed  CAS  Google Scholar 

  59. Klunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., Bergstrom, M., Savitcheva, I., Huang, G. F., Estrada, S., et al. (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 55(3), 306–19.

    Article  PubMed  CAS  Google Scholar 

  60. Price, J. C., Klunk, W. E., Lopresti, B. J., Lu, X., Hoge, J. A., Ziolko, S. K., Holt, D. P., Meltzer, C. C., DeKosky, S. T., and Mathis, C. A. (2005) Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J. Cereb. Blood Flow Metab. 25(11), 1528–47.

    Article  PubMed  CAS  Google Scholar 

  61. Rowe, C. C., Ng, S., Ackermann, U., Gong, S. J., Pike, K., Savage, G., Cowie, T. F., Dickinson, K. L., Maruff, P., Darby, D., et al. (2007) Imaging beta-amyloid burden in aging and dementia. Neurology 68(20), 1718–25.

    Article  PubMed  CAS  Google Scholar 

  62. Verhoeff, N. P., Wilson, A. A., Takeshita, S., Trop, L., Hussey, D., Singh, K., Kung, H. F., Kung, M. P., and Houle, S. (2004) In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am. J. Geriatr. Psychiatry 12(6), 584–95.

    PubMed  Google Scholar 

  63. Price, J. C., Klunk, W. E., Lopresti, B. J., Lu, X., Hoge, J. A., Ziolko, S. K., Holt, D. P., Meltzer, C. C., Dekosky, S. T., and Mathis, C. A. (2005) Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J. Cereb. Blood Flow Metab. 25, 1528–47.

    Article  PubMed  CAS  Google Scholar 

  64. Buckner, R. L., Snyder, A. Z., Shannon, B. J., LaRossa, G., Sachs, R., Fotenos, A. F., Sheline, Y. I., Klunk, W. E., Mathis, C. A., Morris, J. C., et al. (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 25(34), 7709–17.

    Article  PubMed  CAS  Google Scholar 

  65. Villemagne, V. L., Fodero-Tavoletti, M. T., Pike, K. E., Cappai, R., Masters, C. L., and Rowe, C. C. (2008) The ART of loss: Abeta imaging in the evaluation of Alzheimer’s disease and other dementias. Mol. Neurobiol. DOI 10.1007/s12035-008-8019-y

    Google Scholar 

  66. Archer, H. A., Edison, P., Brooks, D. J., Barnes, J., Frost, C., Yeatman, T., Fox, N. C., and Rossor, M. N. (2006) Amyloid load and cerebral atrophy in Alzheimer’s disease: an 11C-PIB positron emission tomography study. Ann. Neurol. 60(1), 145–7.

    Article  PubMed  Google Scholar 

  67. Fagan, A. M., Mintun, M. A., Mach, R. H., Lee, S. Y., Dence, C. S., Shah, A. R., Larossa, G. N., Spinner, M. L., Klunk, W. E., Mathis, C. A., et al. (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta(42) in humans. Ann. Neurol. 59(3), 512–9.

    Article  PubMed  CAS  Google Scholar 

  68. Mintun, M. A., Larossa, G. N., Sheline, Y. I., Dence, C. S., Lee, S. Y., Mach, R. H., Klunk, W. E., Mathis, C. A., DeKosky, S. T., and Morris, J. C. (2006) [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67(3), 446–52.

    Article  PubMed  CAS  Google Scholar 

  69. Price, J. L. and Morris, J. C. (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann. Neurol. 45(3), 358–68.

    Article  PubMed  CAS  Google Scholar 

  70. Hulette, C. M., Welsh-Bohmer, K. A., Murray, M. G., Saunders, A. M., Mash, D. C., and McIntyre, L. M. (1998) Neuropathological and neuropsychological changes in “normal” aging: evidence for preclinical Alzheimer disease in cognitively normal individuals. J. Neuropathol. Exp. Neurol. 57(12), 1168–74.

    Article  PubMed  CAS  Google Scholar 

  71. Morris, J. C. and Price, A. L. (2001) Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J. Mol. Neurosci. 17(2), 101–18.

    Article  PubMed  CAS  Google Scholar 

  72. Rabinovici, G. D., Furst, A. J., O’Neil, J. P., Racine, C. A., Mormino, E. C., Baker, S. L., Chetty, S., Patel, P., Pagliaro, T. A., Klunk, W. E., et al. (2007) 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 68(15), 1205–12.

    Article  PubMed  CAS  Google Scholar 

  73. Engler, H., Santillo, A. F., Wang, S. X., Lindau, M., Savitcheva, I., Nordberg, A., Lannfelt, L., Langstrom, B., and Kilander, L. (2007) In vivo amyloid imaging with PET in frontotemporal dementia. Eur. J. Nucl. Med. Mol. Imaging 35(1), 100–6.

    Article  PubMed  Google Scholar 

  74. Drzezga, A., Grimmer, T., Henriksen, G., Stangier, I., Perneczky, R., Diehl-Schmid, J., Mathis, C. A., Klunk, W. E., Price, J., DeKosky, S., et al. (2008) Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer’s disease. Neuroimage 39(2), 619–33.

    Article  PubMed  Google Scholar 

  75. Yaffe, K., Petersen, R. C., Lindquist, K., Kramer, J., and Miller, B. (2006) Subtype of mild cognitive impairment and progression to dementia and death. Dement. Geriatr. Cogn. Disord. 22(4), 312–9.

    Article  PubMed  Google Scholar 

  76. Pike, K. E., Savage, G., Villemagne, V. L., Ng, S., Moss, S. A., Maruff, P., Mathis, C. A., Klunk, W. E., Masters, C. L., and Rowe, C. C. (2007) {beta}-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain 130(11), 2837–44.

    Article  PubMed  Google Scholar 

  77. Villemagne, V. L., Pike, K. E., Darby, D., Maruff, P., Savage, G., Ng, S., Ackermann, U., Cowie, T. F., Currie, J., Chan, S. G., et al. (2008) Abeta deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer’s disease. Neuropsychologia 46(6), 1688–97.

    Article  PubMed  CAS  Google Scholar 

  78. Ng, S., Villemagne, V. L., Berlangieri, S., Lee, S. T., Cherk, M., Gong, S. J., Ackermann, U., Saunder, T., Tochon-Danguy, H., Jones, G., et al. (2007) Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer’s disease. J. Nucl. Med. 48(4), 547–52.

    Article  PubMed  CAS  Google Scholar 

  79. Rowe, C. C., Ackerman, U., Browne, W., Mulligan, R., Pike, K. L., O’Keefe, G., Tochon-Danguy, H., Chan, G., Berlangieri, S. U., Jones, G., et al. (2008) Imaging of amyloid beta in Alzheimer’s disease with (18)F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 7(2), 129–35.

    Article  PubMed  CAS  Google Scholar 

  80. Friston, K. J., Frith, C. D., Liddle, P. F., and Frackowiak, R. S. (1991) Comparing functional (PET) images: The assessment of significant change. J. Cereb. Blood Flow Metab. 11, 690–9.

    Article  PubMed  CAS  Google Scholar 

  81. Minoshima, S., Koeppe, R. A., Frey, K. A., Ishihara, M., and Kuhl, D. E. (1994) Stereotactic PET atlas of the human brain: aid for visual interpretation of functional brain images. J. Nucl. Med. 35(6), 949–54.

    PubMed  CAS  Google Scholar 

  82. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., and Joliot, M. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–89.

    Article  PubMed  CAS  Google Scholar 

  83. McKeith, I. G., Galasko, D., Kosaka, K., Perry, E. K., Dickson, D. W., Hansen, L. A., Salmon, D. P., Lowe, J., Mirra, S. S., Byrne, E. J., et al. (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47(5), 1113–24.

    Article  PubMed  CAS  Google Scholar 

  84. McKhann, G. M., Albert, M. S., Grossman, M., Miller, B., Dickson, D., and Trojanowski, J. Q. (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol. 58(11), 1803–9.

    Article  PubMed  CAS  Google Scholar 

  85. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., and Kokmen, E. (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 56, 303–8.

    Article  PubMed  CAS  Google Scholar 

  86. Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12(3), 189–98.

    Article  PubMed  CAS  Google Scholar 

  87. Morris, J. C. (1993) The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43(11), 2412–4.

    Article  PubMed  CAS  Google Scholar 

  88. Wilson, A. A., Garcia, A., Chestakova, A., Kung, H., and Houle, S. (2004) A rapid one-step radiosynthesis of the β-amyloid imaging radiotracer N-methyl-[11C]2(40-methylaminophenyl)-6-hydroxybenzothiazole ([11C]-6-OH-BTA-1). J. Label. Compd. Radiopharm. 47, 679–82.

    Article  CAS  Google Scholar 

  89. Lopresti, B. J., Klunk, W. E., Mathis, C. A., Hoge, J. A., Ziolko, S. K., Lu, X., Meltzer, C. C., Schimmel, K., Tsopelas, N. D., DeKosky, S. T., et al. (2005) Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J. Nucl. Med. 46(12), 1959–72.

    PubMed  CAS  Google Scholar 

  90. Daube-Witherspoon, M. W., Matej, S., Karp, J. S., and Lewitt, R. M. (2001) Application of the 3D row action maximum likelihood algorithm to clinical PET imaging. IEEE Trans. Nucl. Sci. 48(1), 24–30.

    Article  Google Scholar 

  91. Logan, J., Fowler, J. S., Volkow, N. D., Wang, G. J., Ding, Y. S., and Alexoff, D. L. (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J. Cereb. Blood Flow Metab. 16, 834–40.

    Article  PubMed  CAS  Google Scholar 

  92. Mintun, M. A., Raichle, M. E., Kilbourn, M. R., Wooten, G. F., and Welch, M. J. (1984) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann. Neurol. 15(3), 217–27.

    Article  PubMed  CAS  Google Scholar 

  93. Joachim, C. L., Morris, J. H., and Selkoe, D. J. (1989) Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am. J. Pathol. 135(2), 309–19.

    PubMed  CAS  Google Scholar 

  94. Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., and Lancaster, J. (1995) A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Map** (ICBM). Neuroimage 2(2), 89–101.

    Article  PubMed  CAS  Google Scholar 

  95. Carson, R. E. (1996) Mathematical modeling and compartmental analysis. In Nuclear medicine, diagnosis and therapy, Harbert, J., Eckelman, W. C., and Neumann, R., (Eds.). Thieme Medical, New York, NY, pp. 167–94.

    Google Scholar 

  96. Logan, J., Fowler, J. S., Volkow, N. D., Wolf, A. P., Dewey, S. L., Schyler, D. J., Macgregor, R. R., Hitzemann, R., Bendriem, B., and Gatley, S. J. (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N11C-methyl]-(-)-cocaine PET studies in human subjects. J. Cereb. Blood Flow Metab. 10, 740–7.

    Article  PubMed  CAS  Google Scholar 

  97. Yaqub, M., Tolboom, N., Boellaard, R., van Berckel, B. N., van Tilburg, E. W., Luurtsema, G., Scheltens, P., and Lammertsma, A. A. (2008) Simplified parametric methods for [(11)C]PIB studies. Neuroimage 42(1), 76–86.

    Article  PubMed  Google Scholar 

  98. Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., Trojanowski, J. Q., Toga, A. W., and Beckett, L. (2005) Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 1(1), 55–66.

    Article  PubMed  Google Scholar 

  99. Yee, S., Mathis, C., Klunk, W., Weissfeld, L., Lopresti, B., Bi, W., Ziolko, S., Berginc, M., DeKosky, S., and Price, J. (2007) Optimal time window for standardized uptake ratio as a simplified measure of PIB retension. J. Nucl. Med. 48, 404p.

    Google Scholar 

  100. McNamee, R. L., Yee, S. H., Price, J. C., Klunk, W. E., Rosario, B., Weissfeld, L., Ziolko, S., Berginc, M., Lopresti, B., Dekosky, S., et al. (2009) Consideration of optimal time window for Pittsburgh compound B PET summed uptake measurements. J. Nucl. Med. 50(3), 348–55.

    Article  PubMed  CAS  Google Scholar 

  101. Koivunen, J., Verkkoniemi, A., Aalto, S., Paetau, A., Ahonen, J. P., Viitanen, M., Nagren, K., Rokka, J., Haaparanta, M., Kalimo, H., et al. (2008) PET amyloid ligand [11C]PIB uptake shows predominantly striatal increase in variant Alzheimer’s disease. Brain 131(Pt 7), 1845–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by funds from the NHMRC Grant #509166, Austin Hospital Medical Research Foundation, Neurosciences Victoria, and the University of Melbourne.

We thank Dr. Henri Tochon-Danguy, Dr. Gordon Chan, Dr. Uwe Ackermann, Dr. Kerryn Pike, Dr. Kenneth Young, Dr. Sylvia Gong, Mr. Tim Saunder, Mr. Gareth Jones, Mrs. Jessica Sagona, Mrs. Kunthi Pathmaraj, Ms. Bridget Chappell, and Mr. Jason Bradley for their crucial role in our ongoing research projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor L. Villemagne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Villemagne, V.L., O’Keefe, G., Mulligan, R.S., Rowe, C.C. (2011). Quantitative Approaches to Amyloid Imaging. In: Shah, K. (eds) Molecular Imaging. Methods in Molecular Biology, vol 680. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-901-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-901-7_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-900-0

  • Online ISBN: 978-1-60761-901-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation