Low Magnification Confocal Microscopy of Tumor Angiogenesis

  • Protocol
  • First Online:
Confocal Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1075))

Abstract

Blood vessels are critical to normal mammalian development, tissue repair, and growth and treatment of cancer. Mouse research models enable mechanistic studies of blood vessels. We detail how to perfuse mice with fluorescent tomato lectin or the lipophilic fluorophore DiI. We provide details on how to image fluorescently labeled blood vessels.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-60761-847-8_18

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94:883–893

    Article  PubMed  Google Scholar 

  2. Abdul-Karim MA, Al-Kofahi K, Brown EB, Jain RK, Roysam B (2003) Automated tracing and change analysis of angiogenic vasculature from in vivo multiphoton confocal image time series. Microvasc Res 66:113–125

    Article  PubMed  Google Scholar 

  3. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436

    Article  CAS  PubMed  Google Scholar 

  4. Yoder EJ, Kleinfeld D (2002) Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy. Microsc Res Tech 56:304–305

    Article  PubMed  Google Scholar 

  5. Angiogenesis Workshop (2003) Intravital microscopy and live cell imaging in angiogenic research. Angiogenesis 5:281–338

    Google Scholar 

  6. Gerber SA, Moran JP, Frelinger JG, Frelinger JA, Fenton BM, Lord EM (2003) Mechanism of IL-12 mediated alterations in tumour blood vessel morphology: analysis using whole-tissue mounts. Br J Cancer 88:1453–1461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Zucker RM, Hunter S, Rogers JM (1998) Confocal laser scanning microscopy of apoptosis in organogenesis-stage mouse embryos. Cytometry 33:348–354

    Article  CAS  PubMed  Google Scholar 

  8. Zucker RM, Hunter ES 3rd, Rogers JM (1999) Apoptosis and morphology in mouse embryos by confocal laser scanning microscopy. Methods 18:473–480

    Article  CAS  PubMed  Google Scholar 

  9. Price OT, Lau C, Zucker RM (2003) Quantitative fluorescence of 5-FU-treated fetal rat limbs using confocal laser scanning microscopy and Lysotracker Red. Cytometry 53A:9–21

    Article  Google Scholar 

  10. Debbage PL, Solder E, Seidl S, Hutzler P, Hugl B, Ofner D, Kreczy A (2001) Intravital lectin perfusion analysis of vascular permeability in human micro- and macro-blood vessels. Histochem Cell Biol 116:349–359

    Article  CAS  PubMed  Google Scholar 

  11. Debbage PL, Seidl S, Kreczy A, Hutzler P, Pavelka M, Lukas P (2000) Vascular permeability and hyperpermeability in a murine adenocarcinoma after fractionated radiotherapy: an ultrastructural tracer study. Histochem Cell Biol 114:259–275

    CAS  PubMed  Google Scholar 

  12. Debbage PL, Griebel J, Ried M, Gneiting T, DeVries A, Hutzler P (1998) Lectin intravital perfusion studies in tumor-bearing mice: micrometer-resolution, wide-area map** of microvascular labeling, distinguishing efficiently and inefficiently perfused microregions in the tumor. J Histochem Cytochem 46:627–639

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Song Y, Zhao L, Gaidosh G, Laties AM, Wen R (2008) Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI. Nat Protoc 3:1703–1708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Li Y, Huang D, **a X, Wang Z, Luo L, Wen R (2011) CCR3 and choroidal neovascularization. PLoS One 6:e17106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rabinovich BA, Ye Y, Etto T, Chen JQ, Levitsky HI, Overwijk WW, Cooper LJ, Gelovani J, Hwu P (2008) Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer. Proc Natl Acad Sci USA 105:14342–14346

    Article  CAS  PubMed  Google Scholar 

  16. Mezzanotte L, Fazzina R, Michelini E, Tonelli R, Pession A, Branchini B, Roda A (2010) In vivo bioluminescence imaging of murine xenograft cancer models with a red-shifted thermostable luciferase. Mol Imaging Biol 12:406–414

    Article  PubMed  Google Scholar 

  17. Saito K, Hatsugai N, Horikawa K, Kobayashi K, Matsu-Ura T, Mikoshiba K, Nagai T (2010) Auto-luminescent genetically-encoded ratiometric indicator for real-time Ca2+ imaging at the single cell level. PLoS One 5:e9935

    Article  PubMed Central  PubMed  Google Scholar 

  18. Nagai T, Chang Y-F, Saito K, Horikawa K, Matsuda T (2011) High performance genetically-encoded auto-luminescent Ca2+ indicators, SuperBRACs. Focus on Microscopy 220. http://www.focusonmicroscopy.org/2011/program.html

  19. Abdulreda MH, Faleo G, Molano RD, Lopez-Cabezas M, Molina J, Tan Y, Echeverria OA, Zahr-Akrawi E, Rodriguez-Diaz R, Edlund PK, Leibiger I, Bayer AL, Perez V, Ricordi C, Caicedo A, Pileggi A, Berggren PO (2011) High-resolution, noninvasive longitudinal live imaging of immune responses. Proc Natl Acad Sci USA 108:12863–12868

    Article  CAS  PubMed  Google Scholar 

  20. Ray P, De A, Min JJ, Tsien RY, Gambhir SS (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64:1323–1330

    Article  CAS  PubMed  Google Scholar 

  21. Avramis IA, Christodoulopoulos G, Suzuki A, Laug WE, Gonzalez-Gomez I, McNamara G, Sausville EA, Avramis VI (2002) In vitro and in vivo evaluations of the tyrosine kinase inhibitor NSC 680410 against human leukemia and glioblastoma cell lines. Cancer Chemother Pharmacol 50:479–489

    Article  CAS  PubMed  Google Scholar 

  22. Burgos JS, Rosol M, Moats RA, Khankaldyyan V, Kohn DB, Nelson MD Jr, Laug WE (2003) Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice. Biotechniques 34:1184–1188

    CAS  PubMed  Google Scholar 

  23. Chantrain CF, DeClerck YA, Groshen S, McNamara G (2003) Computerized quantification of tissue vascularization using high-resolution slide scanning of whole tumor sections. J Histochem Cytochem 51:151–158

    Article  CAS  PubMed  Google Scholar 

  24. Moats RA, Velan-Mullan S, Jacobs R, Gonzalez-Gomez I, Dubowitz DJ, Taga T, Khankaldyyan V, Schultz L, Fraser S, Nelson MD, Laug WE (2003) Micro-MRI at 11.7 T of a murine brain tumor model using delayed contrast enhancement. Mol Imaging 2:150–158

    Article  PubMed  Google Scholar 

  25. Yamada S, Khankaldyyan V, Bu X, Suzuki A, Gonzalez-Gomez I, Takahashi K, McComb JG, Laug WE (2004) A method to accurately inject tumor cells into the caudate/putamen nuclei of the mouse brain. Tokai J Exp Clin Med 29:167–173

    PubMed  Google Scholar 

  26. Mouchess ML, Sohara Y, Nelson MD Jr, DeCLerck YA, Moats RA (2006) Multimodal imaging analysis of tumor progression and bone resorption in a murine cancer model. J Comput Assist Tomogr 30:525–534

    Google Scholar 

  27. Ray P, Tsien R, Gambhir SS (2007) Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Res 67:3085–3093

    Article  CAS  PubMed  Google Scholar 

  28. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882

    Article  CAS  PubMed  Google Scholar 

  29. Wang L, Jackson WC, Steinbach PA, Tsien RY (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci USA 101:16745–16749

    Article  CAS  PubMed  Google Scholar 

  30. Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Moats R, Ma LQ, Wajed R, Sugiura Y, Lazaryev A, Tyszka M, Jacobs R, Fraser S, Nelson MD Jr, DeClerck YA (2001) Magnetic resonance imaging for the evaluation of a novel metastatic orthotopic model of human neuroblastoma in immunodeficient mice. Clin Exp Metastasis 18:455–461

    Article  Google Scholar 

  32. Greer LF 3rd, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17:43–74

    Google Scholar 

  33. Bhaumik S, Gambhir SS (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 99:377–382

    Article  CAS  PubMed  Google Scholar 

  34. Chantrain CF, Shimada H, Jodele S, Groshen S, Ye W, Shalinsky DR, Werb Z, Coussens LM, DeClerck YA (2004) Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 64:1675–1686

    Article  CAS  PubMed  Google Scholar 

  35. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node map**. Nat Biotechnol 22(93–9):7

    Google Scholar 

  36. Defazio RA, Levy S, Morales CL, Levy RV, Dave KR, Lin HW, Abaffy T, Watson BD, Perez-Pinzon MA, Ohanna V (2011) A protocol for characterizing the impact of collateral flow after distal middle cerebral artery occlusion. Transl Stroke Res 2:112–127

    Article  PubMed Central  PubMed  Google Scholar 

  37. Idziorek T, Estaquier J, De Bels F, Ameisen JC (1995) YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability. J Immunol Methods 185:249–258

    Article  CAS  PubMed  Google Scholar 

  38. Calloway CB (2000) A confocal microscope with spectrophotometric detection. Leica Microsystems CDR 4:4–14

    Google Scholar 

  39. Tauer U, Hils O (2000) Confocal spectrophotometry. Leica Microsystems CDR 4:15–27

    Google Scholar 

  40. Lerner JM, Zucker RM (2004) Calibration and validation of confocal spectral imaging systems. Cytometry 62A:8–34

    Article  Google Scholar 

  41. Ploem JS, Walter F (2001) Multi-wavelength epi-illumination in fluorescence microscopy. Leica Microsystems CDR 5:1–15

    Google Scholar 

  42. Montague PR, Meyer M, Folberg R (1995) Technique for the digital imaging of histopathologic preparations of eyes for research and publication. Ophthalmology 102:1248–1251

    Article  CAS  PubMed  Google Scholar 

  43. Matsubayashi Y, Iwai L, Kawasaki H (2008) Fluorescent double-labeling with carbocyanine neuronal tracing and immunohistochemistry using a cholesterol-specific detergent digitonin. J Neurosci Methods 174:71–81

    Article  CAS  PubMed  Google Scholar 

  44. Arribas SM, Daly CJ, McGrath IC (1999) Measurements of vascular remodeling by confocal microscopy. Methods Enzymol 307:246–273

    CAS  PubMed  Google Scholar 

  45. Jirkovska M, Kubinova L, Krekule I, Hach P (1998) Spatial arrangement of fetal placental capillaries in terminal villi: a study using confocal microscopy. Anat Embryol (Berlin) 197:263–272

    Article  CAS  Google Scholar 

  46. Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, van de Rijn M, Botstein D, Brown PO (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci USA 100:10623–10628

    Article  CAS  PubMed  Google Scholar 

  47. Fox SB, Harris AL (2004) Histological quantitation of tumour angiogenesis. APMIS 112:413–430

    Article  PubMed  Google Scholar 

  48. Tozer GM, Ameer-Beg SM, Baker J, Barber PR, Hill SA, Hodgkiss RJ, Locke R, Prise VE, Wilson I, Vojnovic B (2005) Intravital imaging of tumour vascular networks using multi-photon fluorescence microscopy. Adv Drug Deliv Rev 57:135–152

    Article  CAS  PubMed  Google Scholar 

  49. Hillman EM, Moore A (2007) All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast. Nat Photon 1:526–530

    Article  CAS  Google Scholar 

  50. Simon W (1965) Photomicrography of deep fields. Rev Sci Instrum 36:1654–1655

    Article  CAS  PubMed  Google Scholar 

  51. Huisken J, Stainier DY (2009) Selective plane illumination microscopy techniques in developmental biology. Development 136:1963–1975

    Article  CAS  PubMed  Google Scholar 

  52. Forde A, Constien R, Grone H-J, Hammerling G, Arnold B (2002) Temporal Cre-mediated recombination exclusively in endothelial cells using Tie2 regulatory elements. Genesis 33:191–197

    Article  CAS  PubMed  Google Scholar 

  53. Wang X, Rosol M, Ge S, Peterson D, McNamara G, Pollack H, Kohn DB, Nelson MD, Crooks GM (2003) Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 102:3478–3482

    Article  CAS  PubMed  Google Scholar 

  54. Shcherbo D, Murphy CS, Ermakova GV, Solovieva EA, Chepurnykh TV, Shcheglov AS, Verkhusha VV, Pletnev VZ, Hazelwood KL, Roche PM, Lukyanov S, Zaraisky AG, Davidson MW, Chudakov DM (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418:567–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. De A, Ray P, Loening AM, Gambhir SS (2009) BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals. FASEB J 23(8):2702–2709

    Article  CAS  PubMed  Google Scholar 

  56. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    Article  CAS  PubMed  Google Scholar 

  57. McNamara G, Gupta A, Reynaert J, Coates TD, Boswell C (2006) Spectral imaging microscopy web sites and data. Cytometry A 69:863–871

    Article  PubMed  Google Scholar 

  58. Ploem JS (1971) A study of filters and light sources in immunofluorescence microscopy. Ann N Y Acad Sci 177:414–429

    Article  CAS  PubMed  Google Scholar 

  59. Reichman J (2000) Handbook of Optical Filters for Fluorescence Microscopy. Chroma Technology, Brattleboro, VT, USA. p 40

    Google Scholar 

Download references

Acknowledgments

GM thanks Bob Zucker (US EPA, Research Triangle Park, NC) for low power inspiration and discussions, and Thomas D. Coates (CHLA) for direction. We thank Shinya Yamada (CHLA and Tokai University Hachioji Hospital, Tokyo, Japan) for the latex vascular cast method. We thank Clark Thom and Klaus Schreck (Leica Microsystems, Exton, PA) for confocal on-site service, Kolja Wawrowsky (Cedars-Sinai Medical Center Los Angeles, formerly with Leica) for confocal training, Frank Lie, Scott Young, Rob Dunakin, David Zemo, Bob Vogel, and Chris Kier for confocal technical and application support. We are grateful to Bob Vogel and Martin Hoppe of Leica Microsystems for permission to include LCS Lite software with the Paddock 2.0 book CD-ROM. LCS Lite is available for free download from the Leica Microsystems Web site and from Leica salespeople and dealers. Experiments involving multiphoton excitation of Hoechst 33342 were conducted on a Zeiss LSM 510 META NLO microscope at the Light Microscopy Core of City of Hope National Medical Center (http://www.cityofhope.org/LMC/LSM510.asp), in collaboration with Dr. Christine Brown, Renate Starr and Prof. Michael Jensen.

We are grateful to Sam Gambhir for providing the tribrid hrLuc-DsRed2-TK reporter gene construct prior to publication (Ray et al. [20]). We thank Denise Petersen, Karen Pepper, and Don Kohn, CHLA Gene Vector Core, for inserting the tribrid reporter gene into the lentivirus vector and transducing U87MG cells. We thank Dr. Ignacio Gonzalez for histology slide preparation and tissue diagnoses. Our thanks to Ignacio Gonzalez, Dr. Rex Moats, Dr. Mike Rosol, Maya Otto-Duessel, and Dr. Shawn Chen, for discussions.

This work was supported by grants from the National Institutes of Health (CA 82989 to W.E. Laug), the T.J. Martell Foundation (New York) (to W.E. Laug), and an U.S. HRSA capital equipment grant (to Y. DeClerck). Confocal and standard fluorescence microscopy was performed in the Congressman Julian Dixon Cellular Imaging Facility of Children’s Hospital Los Angeles. Hoechst 33342 multiphoton imaging at City of Hope National Medical Center was done in collaboration with Dr. Christine Brown, and Renate Starr, and was funded by NIH grants to Professor Michael Jensen.

The University of Miami Leica SP5 and MP-NDD4/SP5/FCS/FLIM confocal microscopes were purchased with funds from the Diabetes Research Institute Foundation. Rong Wen and Yiwen Li are supported by the National Eye Institute and Bascom Palmer Eye Institute.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Instrumentation

Few publications provide complete specifications on the instrumentation used. Each confocal microscope is built from specialty parts, many of whose performance vary between units. It is unlikely that any two confocal microscopes perform identically on all tests—see Lerner and Zucker [40] for examples. It is unlikely that the same confocal microscope performs identically on the same tests performed on sequential days, weeks, months or years. The intensity of the laser lines change over time (seconds and hours) and intensity changes can be confounded by focus drift of the microscope stage and/or war** of the specimen. In this appendix we list many of the components present in the Leica SP1 confocal DMIRBE inverted microscope that was delivered to CHLA in March 2000 and since upgraded with several new components. We recognize that in 2013 the SP1 is a discontinued model, but think a detailed explanation will help the reader. A major difference between the SP1 and the newer SP2 and SP5 models is that the latter have an acousto-optical beam splitter (AOBS) that replaces the primary laser dichroic beamsplitter(s) for most visible light lasers (the 405 nm and multiphoton laser do not use the AOBS). A correctly calibrated AOBS should enable collection of fluorescence emission from as close as 5 nm of the laser line. The laser light rejection from the emission light path can be disabled for reflection mode imaging.

The Leica SP1 confocal microscope has three lasers, with the Krypton ion laser having been replaced by diode-pumped solid-state (DPSS) laser in November 2004 (Table 1). The photomultiplier tubes (PMTs) in the SP1 are integrated with individual spectrophotometer-style scanning slits (Calloway [38], Tauer and Hils [39]) and the performance depends on correct alignment of the assembly (Table 2). High resolution spectral scanning (5 nm slits, 1 nm step size, 200 steps, i.e., from 450 to 650 nm) of either the tungsten-halogen transmitted light source or laser lines reflected from a Nanofilm or Leica mirror slide, have revealed problems at different times with PMT assemblies (fixed with a service visit).

Table 1 Lasers
Table 2 Photomultiplier tubes

For a core facility where many different specimens are imaged, i.e., fluorescein-tomato lectin blood vessels and DsRed2 fluorescent protein tumor cell masses, CFP → YFP FRET, and Cy5.5-RGD peptide labeled cells, having a large selection of filter sets on hand for viewing specimens by eye is crucial (Table 3). Compared to the price of the confocal microscope (~$360,000) and annual service contract (~$17,000), filter sets at <$1,000 each are inexpensive compared to the entire system. Our filter sets are shared between the Leica SP1 confocal DMIRBE microscope (four cube positions, three filter cubes used plus one empty position for confocal scanning) and a Leica DMRXA/RF8 microscope with eight filter cubes. To maximize compatibility, our Leica MZFLIII motorized fluorescence stereomicroscope has many matched filter sets (the MZFLIII uses a plastic slider with one exciter and two emission filters, and a mirror to reflect Leica Xe 75 W light to the specimen).

Table 3 Microscope filter sets for visual imaging

The confocal scanhead uses an acousto-optical tunable filter (AOTF) as a wavelength selective neutral density control. The AOTF gives much finer and reproducible control over laser power than do the knobs on the Ar and Kr lasers (the DPSS and HeNe lasers do not have knobs, only on/off switches). The AOTF enables adjusting laser power independently for each of the six laser lines in ~0.4 % steps, from 0 to 100 %. The actual output depends on the laser power knob. The Ar457 line power fluctuates over time, at any knob setting, and tends to be low at low knob power settings.

The Leica SP1 scanhead has five beamsplitters (Table 4) for directing the laser light from the AOTF neutral density unit to the objective lens and specimen, and then back from the objective lens to the prism spectral dispersion element and PMT slits/tube assemblies. Our SP1 has a triple dichroic, TD488/568/633, three reflection shortpass (RSP465, RSP500, RSP525) and one reflection/transmission (RT30/70) beamsplitters. The numbers indicate appropriate laser lines (TD filter), approximate 50 % reflection wavelength (RSPs), or approximate reflection/transmission performance (RT). The choice of 30 % reflection (laser light to the specimen) and 70 % transmission (specimen reflection and/or fluorescence emission) is a trade-off of wanting to excite the specimen with as much light as possible, but even more importantly, collecting as much (in focus) light as possible. If the SP1 had much more powerful lasers, it might make more sense to use a RT10/90 (resulting in 0.1 × 0.9 = 0.09 total throughput, but crucially, 90 % of the emitted light), than our RT30/70 (0.3 × 0.7 = 0.21 total throughput, 70 % of the emitted light) (Table 4). The scanhead beamsplitter numbers do not tell the whole story. For any given laser line, fluorophore(s), specimen (autofluorescence), and PMT assembly spectral band pass (especially if out of whack), a particular confocal beamsplitter may be found empirically to outperform another. In particular, we sometimes find the 488 nm laser line and RSP525 beamsplitter often outperforms the RSP500 beamsplitter for fluorescein imaging. See Table 5 for objective lenses.

Table 4 Scanhead beamsplitters
Table 5 Confocal microscope objective lenses

1.2 Web Sites

1.3 CD Image Files

LCSLite200871.exe

Leica LCS Lite 2.0.871 (Windows NT, 2000, XP)

LCSLite2051347a.exe

Leica LCS Lite 2.5.1347a (Windows NT and XP only)

LCSLite2611537.exe

Leica LCS Lite 2.61.1537 (Windows NT and XP only)

Note: All versions of LCS Lite require Administrator privileges to install on a Windows PC. LCS Lite is the free, limited capabilities version of the LCS (Leica Confocal Software) used for acquisition. Leica confocal download sit is ftp://ftp.llt.de/softlib. LCS Lite is available for download from ftp://ftp.llt.de/softlib/LCSLite/ (2.6.1, dated 12/09/2004 is final version). Leica LAS AF Lite is available at ftp://ftp.llt.de/softlib/LAS_AF_Lite/ (version 2.1.0 is dated 5/29/2009).

McNamara 2005 Figure 1 max green channel FTL.tif

Digital Fig. 1. Fluorescein tomato lectin maximum projection of 1,000 × 1,000 × 253 μm volume

McNamara 2005 Figure 2 max red DsRed RFP.tif

Digital Fig. 2. DsRed2 red fluorescent protein transfected glioblastoma cells maximum projection of 1,000 × 1,000 × 253 μm volume

McNamara 2005 G60M07 H&E pathscan image 4,000 dpi.tif

Histology image of hematoxylin and eosin (H&E) tissue section from the brain previously imaged in Figs. 1 and 2, acquired using Pathscan Enabler™ with Polaroid SprintScan 4000+ 35 mm slide scanner. 4,000 dpi is 6.35 μm pixel size

G60m07 top 01 (folder)

Confocal dataset used for Figs. 1 and 2

G60m07 top 02 (folder)

Confocal dataset from a different part of the same mouse brain and tumor as used in G60m07 top 01

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

McNamara, G. et al. (2014). Low Magnification Confocal Microscopy of Tumor Angiogenesis. In: Paddock, S. (eds) Confocal Microscopy. Methods in Molecular Biology, vol 1075. Humana Press, New York, NY. https://doi.org/10.1007/978-1-60761-847-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-847-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-58829-351-0

  • Online ISBN: 978-1-60761-847-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation