Synthesis and Nonradioactive Micro-analysis of Diphosphoinositol Phosphates by HPLC with Postcolumn Complexometry

  • Protocol
  • First Online:
Inositol Phosphates and Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 645))

  • 1075 Accesses

Abstract

A nonradioactive high-performance anion-exchange chromatographic method based on MDD-HPLC (Mayr Biochem. J. 254:585–591, 1988) was developed for the separation of inositol hexakisphosphate (InsP 6, phytic acid) and most isomers of pyrophosphorylated inositol phosphates, such as diphosphoinositol pentakisphosphate (PPInsP 5 or InsP 7) and bis-diphosphoinositol tetrakisphosphate (bisPPInsP 4 or InsP 8). With an acidic elution, the anion-exchange separation led to the resolution of four separable PPInsP 5 isomers (including pairs of enantiomers) into three peaks and of nine separable bisPPInsP 4 isomers into nine peaks. The whole separation procedure was completed within 20–36 min after optimization. Reference standards of all bisPPInsP 4 isomers were generated by a nonenzymatic shotgun synthesis from InsP 6. Hereby, the phosphorylation was brought about nonenzymatically when concentrated InsP 6 bound to the solid surface of anion-exchange beads was incubated with creatine phosphate under optimal pH conditions. From the mixture of pyrophosphorylated InsP 6 derivatives containing all theoretically possible isomers of PPInsP 5, bisPPInsP 4, and also some isomers of trisPPInsP 3, isomers were separated by anion-exchange chromatography and fractions served as reference standards of bisPPInsP 4 isomers for further investigation. Their isomeric nature could be partly assigned by comparison with position specifically synthesized or NMR-characterized purified protozoan reference compounds and partly by limited hydrolysis to PPInsP 5 isomers. By applying this nonradioactive analysis technique to cellular studies, the isomeric nature of the major bisPPInsP 4 in mammalian cells could be identified without the need to obtain sufficient material for NMR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mayr, G.W. (1988) A novel metal-dye detection system permits picomolar-range h.p.l.c. analysis of inositol polyphosphates from non-radioactively labelled cell or tissue specimens. Biochem. J. 254, 585–591.

    CAS  PubMed  Google Scholar 

  2. Pittet, D., Schlegel, W., Lew, D., Monod, A., and Mayr, G. (1989) Mass changes in inositol tetrakis- and pentakisphosphate isomers induced by chemotactic peptide stimulation in HL-60 cells. J. Biol. Chem. 264, 18489–18493.

    CAS  PubMed  Google Scholar 

  3. Lorke, D.E., Gustke, H., and Mayr, G.W. (2004) An optimized fixation and extraction technique for high resolution of inositol phosphate signals in rodent brain. Neurochem. Res. 29, 1887–1896.

    Article  CAS  PubMed  Google Scholar 

  4. Martin, J.B., Foray, M.F., Klein, G., and Satre, M. (1987) Identification of inositol hexa­phos­phate in 31P-NMR spectra of Dictyostelium discoideum amoebae. Relevance to intracellular pH determination. Biochim. Biophys. Acta. 931, 16–25.

    Article  CAS  PubMed  Google Scholar 

  5. Safrany, S.T., Caffrey, J.J., Yang, X., and Shears, S.B. (1999) Diphosphoinositol polyphosphates: the final frontier for inositide research? Biol. Chem. 380, 945–951.

    Article  CAS  PubMed  Google Scholar 

  6. Menniti, F., Miller, R., Putney, J., Jr, and Shears, S. (1993) Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J. Biol. Chem. 268, 3850–3856.

    CAS  PubMed  Google Scholar 

  7. Europe-Finner, G.N., Gammon, B., Wood, C.A., and Newell, P.C. (1989) Inositol tris- and polyphosphate formation during chemotaxis of Dictyostelium. J. Cell Sci. 93, 585–592.

    CAS  PubMed  Google Scholar 

  8. Mayr, G.W., Radenberg, T., Thiel, U., Vogel, G., and Stephens, L.R. (1992) Phosphoinositol disphosphates: non-enzymic formation in vitro and occurence in vivo in the cellular slime mold Dictyostelium. Carbohydr. Res. 234, 247–262.

    Article  CAS  Google Scholar 

  9. Stephens, L., Radenberg, T., Thiel, U., Vogel, G., Khoo, K.H., Dell, A., Jackson, T.R., Hawkins, P.T., Mayr, G.W., Stephens, L.R., Stanley, A.F., Moore, T., Poyner, D.R., Morris, P.J., Hanley, M.R., Kay, R.R., Irvine, R.F., Laussmann, T., Eujen, R., Weisshuhn, C.M., Martin, J.B., Bakker-Grunwald, T., Klein, G., Reddy, K.M., Reddy, K.K., and Falck, J.R. (1993) The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s) myo-inositol pentakisphosphates. J. Biol. Chem. 268, 4009–4015.

    CAS  PubMed  Google Scholar 

  10. Albert, C., Safrany, S.T., Bembenek, M.E., Reddy, K.M., Reddy, K., Falck, J., Brocker, M., Shears, S.B., and Mayr, G.W. (1997) Biological variability in the structures of diphosphoino­sitol polyphosphates in Dictyostelium discoideum and mammalian cells. Biochem. J. 327, 553–560.

    CAS  PubMed  Google Scholar 

  11. Laussmann, T., Reddy, K.M., Reddy, K.K., Falck, J.R., and Vogel, G. (1997) Diphospho-myo-inositol phosphates from Dictyostelium identified as D-6-diphospho-myo-inositol penta­kisphosphate and D-5,6-bisdiphospho-myo-inositol tetrakisphosphate. Biochem. J. 322, 31–33.

    CAS  PubMed  Google Scholar 

  12. Laussmann, T., Hansen, A., Reddy, K.M., Reddy, K.K., Falck, J.R., and Vogel, G. (1998) Diphospho-myo-inositol phosphates in Dictyo­stelium and Polysphondylium: identification of a new bisdiphospho-myo-inositol tetrakisphosphate. FEBS Lett. 426, 145–150.

    Article  CAS  PubMed  Google Scholar 

  13. Martin, J.-B., Bakker-Grunwald, T., and Klein, G. (1993) 31P-NMR analysis of Entamoeba histoly­tica. Occurrence of high amounts of two inositol phosphates. Eur. J. Biochem. 214, 711–718.

    Article  CAS  PubMed  Google Scholar 

  14. Bennett, M., Onnebo, S.M., Azevedo, C., and Saiardi, A. (2006) Inositol pyrophosphates: metabolism and signaling. Cell Mol. Life Sci. 63, 552–564.

    Article  CAS  PubMed  Google Scholar 

  15. York, J.D. (2006) Regulation of nuclear processes by inositol polyphosphates. Biochim. Biophys. Acta. 1761, 552–559.

    CAS  PubMed  Google Scholar 

  16. Irvine, R.F. (2006) Nuclear inositide signalling – expansion, structures and clarification. Biochim. Biophys. Acta. 1761, 505–508.

    CAS  PubMed  Google Scholar 

  17. Luo, H.R., Saiardi, A., Yu, H., Nagata, E., Ye, K., and Snyder, S.H. (2002) Inositol pyrophosphates are required for DNA hyperrecombination in protein kinase C1 mutant yeast. Biochemistry. 41, 2509–2515.

    Article  CAS  PubMed  Google Scholar 

  18. Luo, H.R., Huang, Y.E., Chen, J.C., Saiardi, A., Iijima, M., Ye, K., Huang, Y., Nagata, E., Devreotes, P., and Snyder, S.H. (2003) Inositol pyrophosphates mediate chemotaxis in Dictyostelium via pleckstrin homology domain-PtdIns(3,4,5)P3 interactions. Cell. 114, 559–572.

    Article  CAS  PubMed  Google Scholar 

  19. York, S.J., Armbruster, B.N., Greenwell, P., Petes, T.D., and York, J.D. (2005) Inositol diphosphate signaling regulates telomere length. J. Biol. Chem. 280, 4264–4269.

    Article  CAS  PubMed  Google Scholar 

  20. Saiardi, A., Resnick, A.C., Snowman, A.M., Wendland, B., Snyder, S.H., Bhandari, R., Pesesse, X., Choi, K., Zhang, T., Shears, S.B., Luo, H.R., Huang, Y.E., Chen, J.C., Iijima, M., Ye, K., Huang, Y., Nagata, E., Devreotes, P., El Alami, M., Messenguy, F., Scherens, B., Dubois, E., Sciambi, C., McCaffery, J.M., Yu, H., Menniti, F.S., Miller, R.N., and Putney, J.W., Jr. (2005) Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases phosphorylation of proteins by inositol pyrophosphates. Proc. Natl. Acad. Sci. USA 102, 1911–1914.

    Article  CAS  PubMed  Google Scholar 

  21. York, J.D., Odom, A.R., Murphy, R., Ives, E.B., and Wente, S.R. (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science. 285, 96–100.

    Article  CAS  PubMed  Google Scholar 

  22. Illies C, Gromada J, Fiume R, Leibiger B, Yu J, Juhl K, Yang SN, Barma DK, Falck JR, Saiardi A, Barker CJ, Berggren PO. (2007) Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells. Science. 318, 1299–1302.

    Article  CAS  PubMed  Google Scholar 

  23. Saiardi, A., Bhandari, R., Resnick, A.C., Snowman, A.M., and Snyder, S.H. (2004) Phosphorylation of proteins by inositol pyrophosphates. Science. 306, 2101–2105.

    Article  CAS  PubMed  Google Scholar 

  24. Choi, K., Mollapour, E., and Shears, S.B. (2005) Signal transduction during envi­ronmental stress: InsP(8) operates within highly restricted contexts. Cell. Signal. 17, 1533–1541.

    Article  CAS  PubMed  Google Scholar 

  25. Pesesse, X., Choi, K., Zhang, T., and Shears, S.B. (2004) Signaling by higher inositolpolyphosphates: hyperosmotic stress acutely and selectively activates synthesis of bis-diphosphoinositol tetrakisphosphate (“InsP8”). J. Biol. Chem. 279, 43378–43381.

    Article  CAS  PubMed  Google Scholar 

  26. Draskovic, P., Saiardi, A., Bhandari, R., Burton, A., Ilc, G., Kovacevic, M., Snyder, S.H., and Podobnik, M. (2008) Inositol hexakisphosphate kinase products contain diphosphate and tri­phosphate groups. Chem. Biol. 15, 274–286.

    Article  CAS  PubMed  Google Scholar 

  27. Segel, I.H. (1976) Biochemical calculations: how to solve mathematical problems in general biochemistry. 2nd ed. New York: John Wiley & Sons Inc., pp. 15.

    Google Scholar 

  28. Lide, D.R. (2006) CRC Handbook Chemistry and Physics. 87th ed: Taylor & Francis Group, New York, pp. 8–41.

    Google Scholar 

  29. Lanzetta, P.A., Alvarez, L.J., Reinach, P.S., and Candia, O.A. (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100, 95–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Gunter Vogel (Wuppertal, Germany) for providing the 1/3,5-bisPPInsP 4 isomer from Polysphondylium, and Professor J.R. Falck (UT Southwestern, Dallas, USA) for providing a synthetic 2,5-bisPPInsP 4 sample and pure PPInsP 5 isomers. Parts of the MDD-HPLC analysis have been performed by Bettina Serreck, whose technical support is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg W. Mayr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lin, H., Lindner, K., Mayr, G.W. (2010). Synthesis and Nonradioactive Micro-analysis of Diphosphoinositol Phosphates by HPLC with Postcolumn Complexometry. In: Barker, C. (eds) Inositol Phosphates and Lipids. Methods in Molecular Biology, vol 645. Humana Press. https://doi.org/10.1007/978-1-60327-175-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-175-2_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-174-5

  • Online ISBN: 978-1-60327-175-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation