Inhibition of Telomerase by Targeting MAP Kinase Signaling

  • Protocol
Telomerase Inhibition

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 405))

Summary

Constitutive activation of the mitogen-activated protein (MAP) kinase signaling pathway by oncogenic stimulation is widespread in human cancers. With the recently demonstrated links between MAP kinase, histone phosphorylation, gene transcription factors, and hTERT gene promoter activity, abnormal MAP kinase activity is likely to be one of the essential forces that impact on hTERT gene transcription in transformed human cells. Several proteins have been implicated as playing important roles in MAP kinase signaling to hTERT gene, including Ets and activator protein-1 (AP-1). Inhibition of these signaling mechanisms may have a consequential effect on hTERT gene expression and telomerase activity. In this study, we brief the current progress and strategy in molecular targeting to the interface between MAP kinase and hTERT gene promoter in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goueli, B. S., and Janknecht, R. (2004) Upregulation of the catalytic telomerase subunit by the transcription factor ER81 and oncogenic HER2/Neu, Ras, or Raf. Mol Cell Biol 24, 25–35.

    Article  CAS  PubMed  Google Scholar 

  2. Maida, Y., Kyo, S., Kanaya, T., Wang, Z., Yatabe, N., Tanaka, M., Nakamura, M., Ohmichi, M., Gotoh, N., Murakami, S., and Inoue, M. (2002) Direct activation of telomerase by EGF through Ets-mediated transactivation of TERT via MAP kinase signaling pathway. Oncogene 21, 4071–9.

    Article  CAS  PubMed  Google Scholar 

  3. Bayne, S., and Liu, J. P. (2005) Hormones and growth factors regulate telomerase activity in ageing and cancer. Mol Cell Endocrinol 240, 11–22.

    Article  CAS  PubMed  Google Scholar 

  4. Li, H., Xu, D., Toh, B. H., and Liu, J. P. (2006) TGF-â and cancer: is Smad3 a repressor of hTERT gene? Cell Res 16, 169–73.

    Article  CAS  PubMed  Google Scholar 

  5. Rajagopalan, H., Bardelli, A., Lengauer, C., Kinzler, K. W., Vogelstein, B., and Velculescu, V. E. (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418, 934.

    Article  CAS  PubMed  Google Scholar 

  6. Liu, J. P. (1999) Studies of the molecular mechanisms in the regulation of telomerase activity. FASEB J 13, 2091–104.

    CAS  PubMed  Google Scholar 

  7. Li, H., Pinto, A. R., Duan, W., Li, J., Toh, B. H., and Liu, J. P. (2005) Telomerase down-regulation does not mediate PC12 pheochromocytoma cell differentiation induced by NGF, but requires MAP kinase signalling. J Neurochem 95, 891–901.

    Article  CAS  PubMed  Google Scholar 

  8. Alfonso-De Matte, M. Y., Yang, H., Evans, M. S., Cheng, J. Q., and Kruk, P. A. (2002) Telomerase is regulated by c-Jun NH2-terminal kinase in ovarian surface epithelial cells. Cancer Res 62, 4575–8.

    CAS  PubMed  Google Scholar 

  9. Ge, Z., Liu, C., Bjorkholm, M., Gruber, A., and Xu, D. (2006) Mitogen-activated protein kinase cascade-mediated histone h3 phosphorylation is critical for telomerase reverse transcriptase expression/telomerase activation induced by proliferation. Mol Cell Biol 26, 230–7.

    Article  CAS  PubMed  Google Scholar 

  10. Takakura, M., Kyo, S., Inoue, M., Wright, W. E., and Shay, J. W. (2005) Function of AP-1 in transcription of the telomerase reverse transcriptase gene (TERT) in human and mouse cells. Mol Cell Biol 25, 8037–43.

    Article  CAS  PubMed  Google Scholar 

  11. Fu, W., Lu, C., and Mattson, M. P. (2002) Telomerase mediates the cell survival-promoting actions of brain-derived neurotrophic factor and secreted amyloid precursor protein in develo** hippocampal neurons. J Neurosci 22, 10710–9.

    CAS  PubMed  Google Scholar 

  12. Woo, C. W., Lucarelli, E., and Thiele, C. J. (2004) NGF activation of TrkA decreases N-myc expression via MAPK path leading to a decrease in neuroblastoma cell number. Oncogene 23, 1522–30.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, J., Feng, H., Huang, X. Q., **ang, H., Mao, Y. W., Liu, J. P., Yan, Q., Liu, W. B., Liu, Y., Deng, M., Gong, L., Sun, S., Luo, C., Liu, S. J., Zhang, X. J., and Li, D. W. (2005) Human telomerase reverse transcriptase immortalizes bovine lens epithelial cells and suppresses differentiation through regulation of the ERK signaling pathway. J Biol Chem 280, 22776–87.

    Article  CAS  PubMed  Google Scholar 

  14. Alessi, D. R., Cuenda, A., Cohen, P., Dudley, D. T., and Saltiel, A. R. (1995) PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270, 27489–94.

    Article  CAS  PubMed  Google Scholar 

  15. Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J., and Saltiel, A. R. (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92, 7686–9.

    Google Scholar 

  16. Johnson, G. L., and Lapadat, R. (2002) itogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911–2.

    Article  CAS  PubMed  Google Scholar 

  17. Torres, C., Li, M., Walter, R., and Sierra, F. (2000) Modulation of the ERK pathway of signal transduction by cysteine proteinase inhibitors. J Cell Biochem 80, 11–23.

    Article  CAS  PubMed  Google Scholar 

  18. Wityak, J., Hobbs, F. W., Gardner, D. S., Santella, J. B., 3rd, Petraitis, J. J., Sun, J. H., Favata, M. F., Daulerio, A. J., Horiuchi, K. Y., Copeland, R. A., Scherle, P. A., Jaffe, B. D., Trzaskos, J. M., Magolda, R. L., Trainor, G. L., and Duncia, J. V. (2004) Beyond U0126. Dianion chemistry leading to the rapid synthesis of a series of potent MEK inhibitors. Bioorg Med Chem Lett 14, 1483–6.

    Article  CAS  PubMed  Google Scholar 

  19. Duncia, J. V., Santella, J. B., 3rd, Higley, C. A., Pitts, W. J., Wityak, J., Frietze, W. E., Rankin, F. W., Sun, J. H., Earl, R. A., Tabaka, A. C., Teleha, C. A., Blom, K. F., Favata, M. F., Manos, E. J., Daulerio, A. J., Stradley, D. A., Horiuchi, K., Copeland, R. A., Scherle, P. A., Trzaskos, J. M., Magolda, R. L., Trainor, G. L., Wexler, R. R., Hobbs, F. W., and Olson, R. E. (1998) MEK inhibitors: the chemistry and biological activity of U0126, its analogs, and cyclization products. Bioorg Med Chem Lett 8, 2839–44.

    Article  CAS  PubMed  Google Scholar 

  20. Ge, X., Fu, Y. M., and Meadows, G. G. (2002) U0126, a mitogen-activated protein kinase kinase inhibitor, inhibits the invasion of human A375 melanoma cells. Cancer Lett 179, 133–40.

    Article  CAS  PubMed  Google Scholar 

  21. Shin, M., Yan, C., and Boyd, D. (2002) An inhibitor of c-jun aminoterminal kinase (SP600125) represses c-Jun activation, DNA-binding and PMA-inducible 92-kDa type IV collagenase expression. Biochim Biophys Acta 1589, 311–6.

    Article  CAS  PubMed  Google Scholar 

  22. Vincenti, M. P., and Brinckerhoff, C. E. (2001) The potential of signal transduction inhibitors for the treatment of arthritis: is it all just JNK? J Clin Invest 108, 181–3.

    CAS  PubMed  Google Scholar 

  23. Cirillo, P. F., Pargellis, C., and Regan, J. (2002) The non-diaryl heterocycle classes of p38 MAP kinase inhibitors. Curr Top Med Chem 2, 1021–35.

    Article  CAS  PubMed  Google Scholar 

  24. Ward, K. W., Proksch, J. W., Azzarano, L. M., Salyers, K. L., McSurdy-Freed, J. E., Molnar, T. M., Levy, M. A., and Smith, B. R. (2001) SB-239063, a potent and selective inhibitor of p38 map kinase: preclinical pharmacokinetics and species-specific reversible isomerization. Pharm Res 18, 1336–44.

    Article  CAS  PubMed  Google Scholar 

  25. Adams, J. L., Badger, A. M., Kumar, S., and Lee, J. C. (2001) p38 MAP kinase: molecular target for the inhibition of pro-inflammatoy cytokines. Prog Med Chem 38, 1–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Australia Research Council and National Health & Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this protocol

Cite this protocol

Xu, D., Li, H., Liu, JP. (2007). Inhibition of Telomerase by Targeting MAP Kinase Signaling. In: Andrews, L.G., Tollefsbol, T.O. (eds) Telomerase Inhibition. Methods in Molecular Biology™, vol 405. Humana Press. https://doi.org/10.1007/978-1-60327-070-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-070-0_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-683-2

  • Online ISBN: 978-1-60327-070-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation