Methods for Analysis of Ligand-Induced RNA Conformational Changes

  • Protocol
  • First Online:
Riboswitches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 540))

  • 1749 Accesses

Summary

Encoded within many RNA sequences is the requisite information for folding of intricate three-dimensional structures. Moreover, many noncoding RNAs can adopt structurally distinct and functionally specialized conformations in response to specific cellular signals. These conformational transitions are oftentimes accompanied by changes in hydrodynamic radii. Therefore, experimental methods that measure changes in hydrodynamic radius can be employed for study of signal-induced RNA conformational changes. Several hydrodynamic methods, including analytical ultracentrifugation, size-exclusion chromatography, and nondenaturing gel electrophoresis, are briefly discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 155.14
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schachman, H. K., Pardee, A. B., and Stanier, R. Y. (1952). Studies on the macromolecular organization of microbial cells. Arch. Biochem. Biophys. 38, 245–260

    Article  PubMed  CAS  Google Scholar 

  2. Deras, M. L., Brenowitz, M., Ralston, C. Y., Chance, M. R., and Woodson, S. A. (2000). Folding mechanism of the Tetrahymena ribozyme P4-P6 domain. Biochemistry 39, 10975–10985

    Article  PubMed  CAS  Google Scholar 

  3. Henley, D. D., Lindahl, T., and Fresco, J. R. (1966). Hydrodynamic changes accompanying the thermal denaturation of transfer ribonucleic acid. Proc. Natl. Acad. Sci. U.S.A. 55, 191–198

    Article  PubMed  CAS  Google Scholar 

  4. Stanley, W. M. J. and Bock, R. M. (1965). Isolation and physical properties of the ribosomal ribonucleic acid of Escherichia coli. Biochemistry 4, 1302–1311

    Article  PubMed  CAS  Google Scholar 

  5. McConkey, E. H. (1967). The fractionation of RNA’s by sucrose gradient centrifugation. Methods Enzymol. 12, 620–634

    Article  Google Scholar 

  6. Moldave, K. and Sutter, R. P. (1967). Purification of aminoacyl-sRNA by molecular sieve chromatography on Sephadex. Methods Enzymol. 12, 598–601

    Article  Google Scholar 

  7. Maniatis, T., Jeffrey, A., and van deSande, H. (1975). Chain length determination of small double- and single-stranded DNA molecules by polyacrylamide gel electrophoresis. Biochemistry 14, 3787–3794

    Article  PubMed  CAS  Google Scholar 

  8. Emerick, V.L. and Woodson, S.A. (1994). Fingerprinting the folding of a group I precursor RNA. Proc. Natl. Acad. Sci. U.S.A. 91, 9675–9679

    Article  PubMed  CAS  Google Scholar 

  9. Pan, J., Thirumalai, D. and Woodson, S.A. (2007). Magnesium-dependent folding of self-splicing RNA: Exploring the link between cooperativity, thermodynamics, and kinetics. Proc. Natl. Acad. Sci. U.S.A. 96, 6149–6154

    Article  Google Scholar 

  10. Lilley, D.M. (2004). Analysis of global conformational transitions in ribozymes. Methods Mol. Biol. 252, 77–108

    PubMed  CAS  Google Scholar 

  11. Nudler, E. and Mironov, A. S. (2004). The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 29, 11–17

    Article  PubMed  CAS  Google Scholar 

  12. Winkler, W. C. (2005). Riboswitches and the role of noncoding RNAs in bacterial metabolic control. Curr. Opin. Chem. Biol. 9, 594–602

    Article  PubMed  CAS  Google Scholar 

  13. Mandal, M. and Breaker, R. R. (2004). Gene regulation by riboswitches. Nat. Rev. Mol. Cell. Biol. 5, 451–463

    Article  PubMed  CAS  Google Scholar 

  14. Wakeman, C. A., Winkler, W. C., and Dann, C. E., III. (2007). Structural features of metabolite-sensing riboswitches. Trends Biochem. Sci. 32, 415–424

    Article  PubMed  CAS  Google Scholar 

  15. Howlett, G. J., Minton, A. P., and Rivas, G. (2006). Analytical ultracentrifugation for the study of protein association and assembly. Curr. Opin. Chem. Biol. 10, 430–436

    Article  PubMed  CAS  Google Scholar 

  16. Lebowitz, J., Lewis, M. S., and Schuck, P. (2002). Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci. 11, 2067–2079

    Article  PubMed  CAS  Google Scholar 

  17. Gerhart, J. C. and Schachman, H. K. (1968). Allosteric interactions in aspartate transcarbamylase. II. Evidence for different conformational states of the protein in the presence and absence of specific ligands. Biochemistry 7, 538–552

    Article  PubMed  CAS  Google Scholar 

  18. Constantino, D. and Kieft, J. S. (2005). A preformed compact ribosome-binding domain in the cricket paralysis-like virus IRES RNAs. RNA 11, 332–343

    Article  Google Scholar 

  19. Takamoto, K., He, Q., Morris, S., Chance, M. R., and Brenowitz, M. (2002). Monovalent cations mediate formation of native tertiary structure of the Tetrahymena thermophila ribozyme. Nat. Struct. Mol. Biol. 9, 928–933

    Article  CAS  Google Scholar 

  20. Buchmueller, K.L., Webb, A.E., Richardson, D.A. and Weeks, K.M. (2000). A collapsed non-native RNA folding state. Nat. Struct. Biol. 7, 362–366

    Article  PubMed  CAS  Google Scholar 

  21. Dann, C. E., III, Wakeman, C. A., Sieling, C. L.,Baker, S. C., Irnov, I., and Winkler, W. C. (2007). Structure and mechanism of a metal-sensing regulatory RNA. Cell 130, 878–892

    Article  PubMed  CAS  Google Scholar 

  22. Laue, T. M., Shah, B. D., Ridgeway, R. M., and Pelletier, S. L. (1992). Computer-aided interpretation of analytical sedimentation data for proteins. In: Analytical Ultracentrifugation in Biochemistry and Polymer Science (Harding, S. E., Rowe, A. J., and Horton, J. C., Eds.), The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  23. Schuck, P. (2000). Size distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619

    Article  PubMed  CAS  Google Scholar 

  24. Schuck, P., Perugini, M. A., Gonzales, N. R., Howlett, G. J., and Schubert, D. (2002). Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys. J. 82, 1096–1111

    Article  PubMed  CAS  Google Scholar 

  25. Lamm, O. (1929). Die Differentialgleichung der Ultrazentrifugierung, Ark. Mat. Astr. Fys. 21B, 1–4

    Google Scholar 

  26. Cann, J. R. (1994). Computer simulation of the sedimentation of ligand-mediated and kinetically controlled macromolecular interactions. In: Modern Analytical Ultracentrifugation: Acquisition and Interpretation of Data for Biological and Synthetic Polymer Systems (Schuster, T. M. and Laue, T. M., Eds.), Birkhäuser, Boston, MA, pp. 171–188

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wade C. Winkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Brautigam, C.A., Wakeman, C.A., Winkler, W.C. (2009). Methods for Analysis of Ligand-Induced RNA Conformational Changes. In: Serganov, A. (eds) Riboswitches. Methods in Molecular Biology, vol 540. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-558-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-558-9_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-88-6

  • Online ISBN: 978-1-59745-558-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation