Protease Substrate Profiling by N-Terminal COFRADIC

  • Protocol
  • First Online:
Protein Terminal Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1574))

Abstract

Detection of (neo-)N-terminal peptides is essential for identifying protease cleavage sites . We here present an update of a well-established and efficient selection method for enriching N-terminal peptides out of peptide mixtures: N-terminal COFRADIC (COmbined FRActional DIagonal Chromatography). This method is based on the old concept of diagonal chromatography, which involves a peptide modification step in between otherwise identical chromatographic separations, with this modification step finally allowing for the isolation of N-terminal peptides by longer retention of non-N-terminal peptides on the resin. N-terminal COFRADIC has been successfully applied in many protease-centric studies, as well as for studies on protein alpha-N-acetylation and on characterizing alternative translation initiation events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Enoksson M, Li J, Ivancic MM, Timmer JC, Wildfang E, Eroshkin A, Salvesen GS, Tao WA (2007) Identification of proteolytic cleavage sites by quantitative proteomics. J Proteome Res 6:2850–2858

    Google Scholar 

  2. Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J (2003) Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat Biotechnol 21:566–569

    Article  CAS  PubMed  Google Scholar 

  3. Mahrus S, Trinidad JC, Barkan DT, Sali A, Burlingame AL, Wells JA (2008) Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134:866–876

    Google Scholar 

  4. Timmer JC, Enoksson M, Wildfang E, Zhu W, Igarashi Y, Denault JB, Ma Y, Dummitt B, Chang YH, Mast AE, Eroshkin A, Smith JW, Tao WA, Salvesen GS (2007) Profiling constitutive proteolytic events in vivo. Biochem J 407:41–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu G, Shin SB, Jaffrey SR (2009) Global profiling of protease cleavage sites by chemoselective labeling of protein N-termini. Proc Natl Acad Sci U S A 106:19310–19315

    Google Scholar 

  6. Impens F, Vandekerckhove J, Gevaert K (2010) Who gets cut during cell death? Curr Opin Cell Biol 22:859–864

    Article  CAS  PubMed  Google Scholar 

  7. Timmer JC, Zhu W, Pop C, Regan T, Snipas SJ, Eroshkin AM, Riedl SJ, Salvesen GS (2009) Structural and kinetic determinants of protease substrates. Nat Struct Mol Biol 16:1101–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Impens F, Colaert N, Helsens K, Plasman K, Van Damme P, Vandekerckhove J, Gevaert K (2010) MS-driven protease substrate degradomics. Proteomics 10:1284–1296

    Article  CAS  PubMed  Google Scholar 

  9. Van Damme P, Martens L, Van Damme J, Hugelier K, Staes A, Vandekerckhove J, Gevaert K (2005) Caspase-specific and nonspecific in vivo protein processing during Fas-induced apoptosis. Nat Methods 2:771–777

    Article  CAS  PubMed  Google Scholar 

  10. Starheim KK, Gromyko D, Evjenth R, Ryningen A, Varhaug JE, Lillehaug JR, Arnesen T (2009) Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization. Mol Cell Biol 29:3569–3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Starheim KK, Gromyko D, Velde R, Varhaug JE, Arnesen T (2009) Composition and biological significance of the human Nalpha-terminal acetyltransferases. BMC Proc 3(Suppl 6):S3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Van Damme P, Van Damme J, Demol H, Staes A, Vandekerckhove J, Gevaert K (2009) A review of COFRADIC techniques targeting protein N-terminal acetylation. BMC Proc 3(Suppl 6):S6

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arnesen T (2011) Towards a functional understanding of protein N-terminal acetylation. PLoS Biol 9:e1001074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arnesen T, Van Damme P, Polevoda B, Helsens K, Evjenth R, Colaert N, Varhaug JE, Vandekerckhove J, Lillehaug JR, Sherman F, Gevaert K (2009) Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc Natl Acad Sci U S A 106:8157–8162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goetze S, Qeli E, Mosimann C, Staes A, Gerrits B, Roschitzki B, Mohanty S, Niederer EM, Laczko E, Timmerman E, Lange V, Hafen E, Aebersold R, Vandekerckhove J, Basler K, Ahrens CH, Gevaert K, Brunner E (2009) Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster. PLoS Biol 7:e1000236

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rathore OS, Faustino A, Prudencio P, Van Damme P, Cox CJ, Martinho RG (2016) Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms. Sci Rep 6:21304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gawron D, Ndah E, Gevaert K, Van Damme P (2016) Positional proteomics reveals differences in N-terminal proteoform stability. Mol Syst Biol 12:858

    Article  PubMed  PubMed Central  Google Scholar 

  18. van der Meijden E, Kazem S, Dargel CA, van Vuren N, Hensbergen PJ, Feltkamp MC (2015) Characterization of T antigens, including middle T and alternative T, expressed by the human polyomavirus associated with Trichodysplasia Spinulosa. J Virol 89:9427–9439

    Article  PubMed  PubMed Central  Google Scholar 

  19. Helsens K, Van Damme P, Degroeve S, Martens L, Arnesen T, Vandekerckhove J, Gevaert K (2011) Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation. J Proteome Res 10:3578–3589

    Article  CAS  PubMed  Google Scholar 

  20. Van Damme P, Gawron D, Van Criekinge W, Menschaert G (2014) N-terminal proteomics and ribosome profiling provide a comprehensive view of the alternative translation initiation landscape in mice and men. Mol Cell Proteomics 13:1245–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kleifeld O, Doucet A, auf dem Keller U, Prudova A, Schilling O, Kainthan RK, Starr AE, Foster LJ, Kizhakkedathu JN, Overall CM (2010) Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat Biotechnol 28:281–288

    Article  CAS  PubMed  Google Scholar 

  22. Kleifeld O, Doucet A, Prudova A, auf dem Keller U, Gioia M, Kizhakkedathu JN, Overall CM (2011) Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc 6:1578–1611

    Article  CAS  PubMed  Google Scholar 

  23. Staes A, Van Damme P, Helsens K, Demol H, Vandekerckhove J, Gevaert K (2008) Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC). Proteomics 8:1362–1370

    Article  CAS  PubMed  Google Scholar 

  24. Staes A, Impens F, Van Damme P, Ruttens B, Goethals M, Demol H, Timmerman E, Vandekerckhove J, Gevaert K (2011) Selecting protein N-terminal peptides by combined fractional diagonal chromatography. Nat Protoc 6:1130–1141

    Article  CAS  PubMed  Google Scholar 

  25. Venne AS, Solari FA, Faden F, Paretti T, Dissmeyer N, Zahedi RP (2015) An improved workflow for quantitative N-terminal charge-based fractional diagonal chromatography (ChaFRADIC) to study proteolytic events in Arabidopsis thaliana. Proteomics 15:2458–2469

    Article  CAS  PubMed  Google Scholar 

  26. Venne AS, Vogtle FN, Meisinger C, Sickmann A, Zahedi RP (2013) Novel highly sensitive, specific, and straightforward strategy for comprehensive N-terminal proteomics reveals unknown substrates of the mitochondrial peptidase Icp55. J Proteome Res 12:3823–3830

    Article  CAS  PubMed  Google Scholar 

  27. Tsiatsiani L, Timmerman E, De Bock PJ, Vercammen D, Stael S, van de Cotte B, Staes A, Goethals M, Beunens T, Van Damme P, Gevaert K, Van Breusegem F (2013) The Arabidopsis metacaspase9 degradome. Plant Cell 25:2831–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC , as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Google Scholar 

  29. Tape CJ, Norrie IC, Worboys JD, Lim L, Lauffenburger DA, Jorgensen C (2014) Cell-specific labeling enzymes for analysis of cell-cell communication in continuous co-culture. Mol Cell Proteomics 13:1866–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gauthier NP, Soufi B, Walkowicz WE, Pedicord VA, Mavrakis KJ, Macek B, Gin DY, Sander C, Miller ML (2013) Cell-selective labeling using amino acid precursors for proteomic studies of multicellular environments. Nat Methods 10:768–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Colaert N, Helsens K, Martens L, Vandekerckhove J, Gevaert K (2009) Improved visualization of protein consensus sequences by iceLogo. Nat Methods 6:786–787

    Article  CAS  PubMed  Google Scholar 

  32. Plasman K, Demol H, Bird PI, Gevaert K, Van Damme P (2014) Substrate specificities of the granzyme tryptases A and K. J Proteome Res 13:6067–6077

    Article  CAS  PubMed  Google Scholar 

  33. Van Damme P, Maurer-Stroh S, Hao H, Colaert N, Timmerman E, Eisenhaber F, Vandekerckhove J, Gevaert K (2010) The substrate specificity profile of human granzyme A. Biol Chem 391:983–997

    Article  CAS  PubMed  Google Scholar 

  34. Van Damme P, Maurer-Stroh S, Plasman K, Van Durme J, Colaert N, Timmerman E, De Bock PJ, Goethals M, Rousseau F, Schymkowitz J, Vandekerckhove J, Gevaert K (2009) Analysis of protein processing by N-terminal proteomics reveals novel species-specific substrate determinants of granzyme B orthologs. Mol Cell Proteomics 8:258–272

    Article  CAS  PubMed  Google Scholar 

  35. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  36. Dimarchi RD, Tam JP, Kent SB, Merrifield RB (1982) Weak acid-catalyzed pyrrolidone carboxylic acid formation from glutamine during solid phase peptide synthesis. Minimization by rapid coupling. Int J Pept Protein Res 19:88–93

    Article  CAS  PubMed  Google Scholar 

  37. Rehder DS, Dillon TM, Pipes GD, Bondarenko PV (2006) Reversed-phase liquid chromatography/mass spectrometry analysis of reduced monoclonal antibodies in pharmaceutics. J Chromatogr A 1102:164–175

    Article  CAS  PubMed  Google Scholar 

  38. Tan Z, Ihnat PM, Nayak VS, Russell RJ (2012) Quantitative analysis of tris(2-carboxyethyl)phosphine by anion-exchange chromatography and evaporative light-scattering detection. J Pharm Biomed Anal 59:167–172

    Article  CAS  PubMed  Google Scholar 

  39. Impens F, Colaert N, Helsens K, Ghesquiere B, Timmerman E, De Bock PJ, Chain BM, Vandekerckhove J, Gevaert K (2010) A quantitative proteomics design for systematic identification of protease cleavage events. Mol Cell Proteomics 9:2327–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boja ES, Fales HM (2001) Overalkylation of a protein digest with iodoacetamide. Anal Chem 73:3576–3582

    Article  CAS  PubMed  Google Scholar 

  41. Mudge AW, Fellows RE (1973) Bovine pituitary pyrrolidonecarboxylyl peptidase. Endocrinology 93:1428–1434

    Article  CAS  PubMed  Google Scholar 

  42. Browne P, O’Cuinn G (1983) An evaluation of the role of a pyroglutamyl peptidase, a post-proline cleaving enzyme and a post-proline dipeptidyl amino peptidase, each purified from the soluble fraction of guinea-pig brain, in the degradation of thyroliberin in vitro. Eur J Biochem 137:75–87

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Impens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Staes, A. et al. (2017). Protease Substrate Profiling by N-Terminal COFRADIC. In: Schilling, O. (eds) Protein Terminal Profiling. Methods in Molecular Biology, vol 1574. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6850-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6850-3_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6849-7

  • Online ISBN: 978-1-4939-6850-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation