Profiling of Protein N-Termini and Their Modifications in Complex Samples

  • Protocol
  • First Online:
Protein Terminal Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1574))

Abstract

Protein N termini are a unique window to the functional state of the proteome, revealing translation initiation sites, co-translation truncation and modification, posttranslational maturation, and further proteolytic processing into different proteoforms with distinct functions. As a direct readout of proteolytic activity, protein N termini further reveal proteolytic regulation of diverse biological processes and provide a route to determine specific substrates and hence the physiological functions for any protease of interest. Here, we describe our current protocol of the successful Terminal Amine Isotope Labeling of Substrates (TAILS) technique, which enriches protein N-terminal peptides from complex proteome samples by negative selection. Genome-encoded N termini, protease-generated neo-N termini, and endogenously modified N termini are all enriched simultaneously. Subsequent mass spectrometric analysis therefore profiles all protein N termini and their modifications present in a complex sample in a single experiment. We further provide a detailed protocol for the TAILS-compatible proteome preparation from plant material and discuss specific considerations for N terminome data analysis and annotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Giglione C, Fieulaine S, Meinnel T (2015) N-terminal protein modifications: bringing back into play the ribosome. Biochimie 114:134–146

    Article  CAS  PubMed  Google Scholar 

  2. Lange PF, Overall CM (2013) Protein TAILS: when termini tell tales of proteolysis and function. Curr Opin Chem Biol 17:73–82

    Article  CAS  PubMed  Google Scholar 

  3. Van Damme P, Gawron D, Van Criekinge W et al (2014) N-terminal proteomics and ribosome profiling provide a comprehensive view of the alternative translation initiation landscape in mice and men. Mol Cell Proteomics 13:1245–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Venne AS, Solari FA, Faden F et al (2015) An improved workflow for quantitative N-terminal charge-based fractional diagonal chromatography (ChaFRADIC) to study proteolytic events in Arabidopsis thaliana. Proteomics 15:2458–2469

    Article  CAS  PubMed  Google Scholar 

  5. Zhang H, Deery MJ, Gannon L et al (2015) Quantitative proteomics analysis of the Arg/N-end rule pathway of targeted degradation in Arabidopsis roots. Proteomics 15:2447–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huesgen PF, Alami M, Lange PF et al (2013) Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids. PLoS One 8:e74483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rowland E, Kim J, Bhuiyan NH et al (2015) The Arabidopsis chloroplast stromal N-terminome: complexities of amino-terminal protein maturation and stability. Plant Physiol 169:1881–1896

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kohler D, Dobritzsch D, Hoehenwarter W et al (2015) Identification of protein N-termini in Cyanophora paradoxa cyanelles: transit peptide composition and sequence determinants for precursor maturation. Front Plant Sci 6:559

    PubMed  PubMed Central  Google Scholar 

  9. Fortelny N, Yang S, Pavlidis P et al (2015) Proteome TopFIND 3.0 with TopFINDer and PathFINDer: database and analysis tools for the association of protein termini to pre- and post-translational events. Nucleic Acids Res 43:D290–D297

    Article  PubMed  Google Scholar 

  10. Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80:273–299

    Article  CAS  PubMed  Google Scholar 

  11. Marino G, Eckhard U, Overall CM (2015) Protein termini and their modifications revealed by positional proteomics. ACS Chem Biol 10:1754–1764

    Article  CAS  PubMed  Google Scholar 

  12. Kleifeld O, Doucet A, Auf Dem Keller U et al (2010) Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat Biotechnol 28:281–288

    Article  CAS  PubMed  Google Scholar 

  13. Kleifeld O, Doucet A, Prudova A et al (2011) Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc 6:1578–1611

    Article  CAS  PubMed  Google Scholar 

  14. Klein T, Fung SY, Renner F et al (2015) The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-kappaB signalling. Nat Commun 6:8777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schlage P, Egli FE, Nanni P et al (2014) Time-resolved analysis of the matrix metalloproteinase 10 substrate degradome. Mol Cell Proteomics 13:580–593

    Article  CAS  PubMed  Google Scholar 

  16. Lange PF, Huesgen PF, Nguyen K et al (2014) Annotating N termini for the human proteome project: N termini and nalpha-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. J Proteome Res 13:2028–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eckhard U, Marino G, Abbey SR et al (2015) The human dental pulp proteome and N-terminome: levering the unexplored potential of semitryptic peptides enriched by TAILS to identify missing proteins in the human proteome project in underexplored tissues. J Proteome Res 14:3568–3582

    Article  CAS  PubMed  Google Scholar 

  18. Lai ZW, Weisser J, Nilse L et al (2016) Formalin-Fixed, Paraffin-Embedded Tissues (FFPE) as a robust source for the profiling of native and protease-generated protein amino termini. Mol Cell Proteomics 15:2203–2213

    Article  CAS  PubMed  Google Scholar 

  19. Kohler D, Montandon C, Hause G et al (2015) Characterization of chloroplast protein import without Tic56, a component of the 1-megadalton translocon at the inner envelope membrane of chloroplasts. Plant Physiol 167:972–990

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cox J, Matic I, Hilger M et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4:698–705

    Article  CAS  PubMed  Google Scholar 

  21. Bertsch A, Gropl C, Reinert K et al (2011) OpenMS and TOPP: open source software for LC-MS data analysis. Methods Mol Biol 696:353–367

    Article  CAS  PubMed  Google Scholar 

  22. Deutsch EW, Mendoza L, Shteynberg D et al (2015) Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl 9(7–8):745–754. doi:10.1002/prca.201400164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huesgen PF, Lange PF, Rogers LD et al (2015) LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification. Nat Methods 12:55–58

    Article  CAS  PubMed  Google Scholar 

  24. Giansanti P, Tsiatsiani L, Low TY et al (2016) Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat Protoc 11:993–1006

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Fonslow BR, Shan B et al (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113:2343–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han DK, Eng J, Zhou H et al (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 19:946–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nilse L, Sigloch FC, Biniossek ML et al (2015) Toward improved peptide feature detection in quantitative proteomics using stable isotope labeling. Proteomics Clin Appl 9:706–714

    Article  CAS  PubMed  Google Scholar 

  28. Fortelny N, Pavlidis P, Overall CM (2015) The path of no return-Truncated protein N-termini and current ignorance of their genesis. Proteomics 15:2547–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Creasy DM, Cottrell JS (2004) Unimod: Protein modifications for mass spectrometry. Proteomics 4:1534–1536

    Article  CAS  PubMed  Google Scholar 

  30. Auf Dem Keller U, Overall CM (2012) CLIPPER: an add-on to the Trans-Proteomic Pipeline for the automated analysis of TAILS N-terminomics data. Biol Chem 393:1477–1483

    CAS  PubMed  Google Scholar 

  31. Omasits U, Ahrens CH, Muller S et al (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30:884–886

    Article  CAS  PubMed  Google Scholar 

  32. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906

    Article  CAS  PubMed  Google Scholar 

  33. Auf Dem Keller U, Prudova A, Gioia M et al (2010) A statistics-based platform for quantitative N-terminome analysis and identification of protease cleavage products. Mol Cell Proteomics 9:912–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Chris Overall (University of British Columbia, Vancouver, Canada) and his team for establishing the original TAILS workflow and continued open exchange of information concerning improvements and adaptations. This work is supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC starting grant “ProPlantStress”, grant agreement No 639905, to PFH). JNK is a recipient of a Career Investigator Scholar award from the Michael Smith Foundation for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitter F. Huesgen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Demir, F., Niedermaier, S., Kizhakkedathu, J.N., Huesgen, P.F. (2017). Profiling of Protein N-Termini and Their Modifications in Complex Samples. In: Schilling, O. (eds) Protein Terminal Profiling. Methods in Molecular Biology, vol 1574. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6850-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6850-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6849-7

  • Online ISBN: 978-1-4939-6850-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation