Chapter 19 Cryopreservation Effect on Genetic Function: Neonatal Outcomes

  • Protocol
  • First Online:
Cryopreservation of Mammalian Gametes and Embryos

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1568))

Abstract

Cryopreservation is a well-established technique commonly used in clinical practice. It is used widely for the conservation of gametes and embryos that will be used later for insemination or in vitro fertilization. However, several studies have shown that this technique can produce changes in messenger RNA levels, in the epigenome and induce DNA damage. Although the embryo has potent mechanisms for DNA repair, and molecular changes in spermatozoa are not necessarily reflected in the embryo, it is important to explore new molecular tests and diagnostic tools to design optimal cryopreservation protocols and avoid undesirable molecular alterations. This chapter describes a protocol to quantify the lesions produced by cryopreservation using a protocol previously published by Rothfuss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van Montfoort AP, Hanssen LL, de Sutter P, Viville S, Geraedts JP, de Boer P (2012) Assisted reproduction treatment and epigenetic inheritance. Hum Reprod Update 8(2):171–197

    Article  Google Scholar 

  2. Amor DJ, Halliday J (2008) A review of known imprinting syndromes and their association with assisted reproduction technologies. Hum Reprod 23:2826–2834

    Article  PubMed  Google Scholar 

  3. Carrell DT, Hammoud SS (2010) The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod 16:37–47

    Article  CAS  PubMed  Google Scholar 

  4. Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, Macdonald F, Sampson JR, Barratt CL, Reik W et al (2003) Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). Journal of Medical Genetics 40:62–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maher ER, Afnan M, Barratt CL (2003) Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs? Human Reproduction 18:2508–2511

    Article  PubMed  Google Scholar 

  6. Valcarce DG, Cartón-García F, Herráez MP, Robles V (2013) Effect of cryopreservation on human sperm messenger RNAs crucial for fertilization and early embryo development. Cryobiology 67(1):84–90

    Article  CAS  PubMed  Google Scholar 

  7. Riesco MF, Robles V (2013) Cryopreservation causes genetic and epigenetic changes in zebrafish genital ridges. PLoS One 8(6):e67614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Riesco MF, Robles V (2012) Quantification of DNA damage by q-PCR in cryopreserved zebrafish primordial germ cells. J Appl Ichthyol 28:925–929

    Article  CAS  Google Scholar 

  9. Zini A, Boman JM, Belzile E, Ciampi A (2008) Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod 23:2663–2668

    Article  CAS  PubMed  Google Scholar 

  10. Rothfuss O, Gasser T, Patenge N (2010) Analysis of differential DNA damage in the mitochondrial genome employing a semi-long run real-time PCR approach. Nucleic Acids Research 38:e24

    Article  PubMed  Google Scholar 

  11. Cartón-García F, Riesco MF, Cabrita E, Martínez-Pastor F, Herráez MP, Robles V (2013) Quantification of lesions in nuclear and mitochondrial genes of Sparus aurata cryopreserved sperm. Aquaculture 402–403:106–112

    Article  Google Scholar 

  12. Valcarce DG, Cartón-García F, Riesco MF, Herráez MP, Robles V (2013) Analysis of DNA damage after human sperm cryopreservation in genes crucial for fertilization and early embryo development. Andrology 1(5):723–730

    Article  CAS  PubMed  Google Scholar 

  13. World Health Organization (2010) WHO laboratory manual for the examination and processing of human semen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanesa Robles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Robles, V., Riesco, M.F., Valcarce, D.G. (2017). Chapter 19 Cryopreservation Effect on Genetic Function: Neonatal Outcomes. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) Cryopreservation of Mammalian Gametes and Embryos. Methods in Molecular Biology, vol 1568. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6828-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6828-2_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6826-8

  • Online ISBN: 978-1-4939-6828-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation