Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides

  • Protocol
  • First Online:
The Nucleolus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1455))

Abstract

The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of ribosomal RNA synthesis and assembly of ribosomes. The nucleolus plays also a major role in nuclear organization as the largest compartment within the nucleus. The prominent structure of the nucleolus can be detected using contrast light microscopy providing an approximate localization of the nucleolus, but this approach does not allow to determine accurately the three-dimensional structure of the nucleolus in cells and tissues. Immunofluorescence staining with antibodies specific to nucleolar proteins albeit very useful is time consuming, normally antibodies recognize their epitopes only within a small range of species and is applicable only in fixed cells. Here, we present a simple method to selectively and accurately label this ubiquitous subnuclear compartment in living cells of a large range of species using a fluorescently labeled cell-penetrating peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 80.24
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 101.64
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown R (1831) Observations on the organs and mode of fecundation in Orchideae and Asclepiadae. Trans Linnean Soc Lond 16(3):709–737

    Google Scholar 

  2. Valentin G (1836) Repertorium für Anatomie und Physiologie, vol 1. Verlag von Veit unc Comp, Berlin

    Google Scholar 

  3. Brown DD, Gurdon JB (1964) Absence of ribosomal Rna synthesis in the anucleolate mutant of Xenopus Laevis. Proc Natl Acad Sci U S A 51:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Granboulan N, Granboulan P (1965) Cytochimic ultrastructurale du nucleole. II. Etude des sites de synthese du RNA dans le nucleole et le noyau. Exp Cell Res 38:604–619

    Article  CAS  PubMed  Google Scholar 

  5. Pederson T (1998) The plurifunctional nucleolus. Nucleic Acids Res 26(17):3871–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol 3(3):a000638. doi:10.1101/cshperspect.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dundr M, Misteli T, Olson MO (2000) The dynamics of postmitotic reassembly of the nucleolus. J Cell Biol 150(3):433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hernandez-Verdun D (2011) Assembly and disassembly of the nucleolus during the cell cycle. Nucleus 2(3):189–194. doi:10.4161/nucl.2.3.16246

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cheutin T, O’Donohue MF, Beorchia A, Vandelaer M, Kaplan H, Defever B, Ploton D, Thiry M (2002) Three-dimensional organization of active rRNA genes within the nucleolus. J Cell Sci 115(Pt 16):3297–3307

    CAS  PubMed  Google Scholar 

  10. Derenzini M, Pasquinelli G, O’Donohue MF, Ploton D, Thiry M (2006) Structural and functional organization of ribosomal genes within the mammalian cell nucleolus. J Histochem Cytochem 54(2):131–145

    Article  CAS  PubMed  Google Scholar 

  11. Scheer U, Hock R (1999) Structure and function of the nucleolus. Curr Opin Cell Biol 11(3):385–390

    Article  CAS  PubMed  Google Scholar 

  12. Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433(7021):77–83

    Article  CAS  PubMed  Google Scholar 

  13. Dang CV, Lee WM (1989) Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins. J Biol Chem 264(30):18019–18023

    CAS  PubMed  Google Scholar 

  14. Hatanaka M (1990) Discovery of the nucleolar targeting signal. Bioessays 12(3):143–148

    Article  CAS  PubMed  Google Scholar 

  15. Leonhardt H, Cardoso MC (1995) Targeting and association of proteins with functional domains in the nucleus: the insoluble solution. In Structural and Functional Organization of the Nuclear Matrix. Int Rev Cytol 162B:303–335

    CAS  PubMed  Google Scholar 

  16. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193

    Article  CAS  PubMed  Google Scholar 

  17. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55(6):1179–1188

    Article  CAS  PubMed  Google Scholar 

  18. Martin RM, Ter-Avetisyan G, Herce HD, Ludwig AK, Lattig-Tunnemann G, Cardoso MC (2015) Principles of protein targeting to the nucleolus. Nucleus 6(4):314–325. doi:10.1080/19491034.2015.1079680

    Article  PubMed  PubMed Central  Google Scholar 

  19. Herce HD, Garcia AE, Cardoso MC (2014) Fundamental molecular mechanism for the cellular uptake of guanidinium-rich molecules. J Am Chem Soc 136(50):17459–17467. doi:10.1021/ja507790z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martin RM, Tunnemann G, Leonhardt H, Cardoso MC (2007) Nucleolar marker for living cells. Histochem Cell Biol 127(3):243–251

    Article  CAS  PubMed  Google Scholar 

  21. Martin RM, Leonhardt H, Cardoso MC (2005) DNA labeling in living cells. Cytometry A 67(1):45–52

    Article  PubMed  Google Scholar 

  22. Tünnemann G, Ter-Avetisyan G, Martin RM, Stöckl M, Herrmann A, Cardoso MC (2008) Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci 14(4):469–476. doi:10.1002/psc.968

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all present and past members of the laboratory for their contributions over the years. Robert M. Martin is supported by a fellowship of the Fundação para a Ciência e Tecnologia, Portugal (SFRH/BPD/66611/2009). The laboratory of M. Cristina Cardoso is supported by grants of the German Research Foundation (DFG) and the Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cristina Cardoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Martin, R.M., Herce, H.D., Ludwig, A.K., Cardoso, M.C. (2016). Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides. In: Németh, A. (eds) The Nucleolus. Methods in Molecular Biology, vol 1455. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3792-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3792-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3790-5

  • Online ISBN: 978-1-4939-3792-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation