Causal Biological Network Database: A Comprehensive Platform of Causal Biological Network Models Focused on the Pulmonary and Vascular Systems

  • Protocol
Computational Systems Toxicology

Abstract

While the ever-increasing amounts of scientific data provide a more detailed description of toxic effects, it is not trivial to extract information that will contribute to a better biological understanding. Sophisticated computational methods have been developed to separate mathematically the biological signal from the noise in high-throughput datasets; however, visualizing and putting a signal into a relevant biological context using a priori knowledge is equally important. The Causal Biological Network (CBN) Database addresses these pressing needs in pulmonary and vascular biology. Each of the network models deposited in the CBN Database is scripted in the Biological Expression Language (BEL), a semantic language that represents scientific findings in a computable format. The biological areas covered by the CBN models include cell fate, response to cell stress, cell proliferation, inflammation, tissue repair, and angiogenesis, all in the context of the pulmonary and vascular systems. With specific biological boundaries, multiple types of gene-centric entities, literature support at edge level, and interactive visualization, the CBN Database offers a coherent illustration of important biological processes. Moreover, the computability of the CBN models provides the possibility of data-driven enhancement that delivers an efficient combination of literature knowledge and high-throughput data in a single model. The CBN Database can be applied in computational toxicology and could be extended to drug discovery, biomarker identification, and personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dennis G Jr, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  2. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Joshi-Tope G, Gillespie M, Vastrik I et al (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33:D428–D432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Nishimura D (2001) BioCarta. Biotech software & internet report. Comput Software J Sci 2:117–120

    Google Scholar 

  5. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Croft D, Mundo AF, Haw R et al (2014) The reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kanehisa M, Goto S, Sato Y et al (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Elkon R, Vesterman R, Amit N et al (2008) SPIKE–a database, visualization and analysis tool of cellular signaling pathways. BMC Bioinformatics 9:110

    Article  PubMed Central  PubMed  Google Scholar 

  9. Paz A, Brownstein Z, Ber Y et al (2010) SPIKE: a database of highly curated human signaling pathways. Nucleic Acids Res 39(Database issue):793–799

    Google Scholar 

  10. Li J, Ning Y, Hedley W et al (2002) The molecule pages database. Nature 420:716–717

    Article  CAS  PubMed  Google Scholar 

  11. Saunders B, Lyon S, Day M et al (2008) The molecule pages database. Nucleic Acids Res 36:D700–D706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Schaefer CF, Anthony K, Krupa S et al (2009) PID: the pathway interaction database. Nucleic Acids Res 37:D674–D679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Catlett NL, Bargnesi AJ, Ungerer S et al (2013) Reverse causal reasoning: applying qualitative causal knowledge to the interpretation of high-throughput data. BMC Bioinformatics 14:340

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hoeng J, Deehan R, Pratt D et al (2012) A network-based approach to quantifying the impact of biologically active substances. Drug Discov Today 17:413–418

    Article  PubMed  Google Scholar 

  15. Hoeng J, Talikka M, Martin F et al (2013) Case study: the role of mechanistic network models in systems toxicology. Drug Discov Today 19:183–192

    Article  PubMed  Google Scholar 

  16. Martin F, Thomson TM, Sewer A et al (2012) Assessment of network perturbation amplitude by applying high-throughput data to causal biological networks. BMC Syst Biol 6:54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Thomson TM, Sewer A, Martin F et al (2013) Quantitative assessment of biological impact using transcriptomic data and mechanistic network models. Toxicol Appl Pharmacol 272:863–878

    Article  CAS  PubMed  Google Scholar 

  18. Martin F, Sewer A, Talikka M et al (2014) Quantification of biological network perturbations for mechanistic insight and diagnostics using two-layer causal models. BMC Bioinformatics 15:238

    Article  PubMed Central  PubMed  Google Scholar 

  19. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Westra JW, Schlage WK, Frushour BP et al (2011) Construction of a computable cell proliferation network focused on non-diseased lung cells. BMC Syst Biol 5:105

    Article  PubMed Central  PubMed  Google Scholar 

  21. Schlage WK, Westra JW, Gebel S et al (2011) A computable cellular stress network model for non-diseased pulmonary and cardiovascular tissue. BMC Syst Biol 5:168

    Article  PubMed Central  PubMed  Google Scholar 

  22. Fujii-Kuriyama Y, Mimura J (2005) Molecular mechanisms of AhR functions in the regulation of cytochrome P450 genes. Biochem Biophys Res Commun 338:311–317

    Article  CAS  PubMed  Google Scholar 

  23. Sagredo C, Øvrebø S, Haugen A et al (2006) Quantitative analysis of benzo-a-pyrene biotransformation and adduct formation in Ahr knockout mice. Toxicol Lett 167:173–182

    Article  CAS  PubMed  Google Scholar 

  24. Baulig A, Garlatti M, Bonvallot V et al (2003) Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 285:L671–L679

    Article  CAS  PubMed  Google Scholar 

  25. Ferecatu I, Borot M-C, Bossard C et al (2010) Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor. Part Fibre Toxicol 7:18–32

    Article  PubMed Central  PubMed  Google Scholar 

  26. Rouse RL, Murphy G, Boudreaux MJ et al (2008) Soot nanoparticles promote biotransformation, oxidative stress, and inflammation in murine lungs. Am J Respir Cell Mol Biol 39:198–207

    Article  CAS  PubMed  Google Scholar 

  27. Iskandar AR, Martin F, Talikka M et al (2013) Systems approaches evaluating the perturbation of xenobiotic metabolism in response to cigarette smoke exposure in nasal and bronchial tissues. BioMed Res Int 2013:512086, doi:10.1155/2013/512086

    Article  PubMed Central  PubMed  Google Scholar 

  28. Westra JW, Schlage WK, Hengstermann A et al (2013) A modular cell-type focused inflammatory process network model for non-diseased pulmonary tissue. Bioinform Biol Insights 7:167–192

    PubMed Central  PubMed  Google Scholar 

  29. Gebel S, Lichtner RB, Frushour B et al (2013) Construction of a computable network model for DNA damage, autophagy, cell death, and senescence. Bioinform Biol Insights 7:97–117

    PubMed Central  PubMed  Google Scholar 

  30. Park J, Schlage W, Frushour B et al (2013) Construction of a computable network model of tissue repair and angiogenesis in the lung. J Clin Toxicol S12:2161-0495

    Article  Google Scholar 

  31. De Leon H, Boue S, Schlage WK et al (2014) A vascular biology network model focused on inflammatory processes to investigate atherogenesis and plaque instability. J Transl Med 12:185

    Article  PubMed Central  PubMed  Google Scholar 

  32. Liu T, Baek HA, Yu H et al (2011) FIZZ2/RELM-beta induction and role in pulmonary fibrosis. J Immunol 187:450–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Costello CM, Howell K, Cahill E et al (2008) Lung-selective gene responses to alveolar hypoxia: potential role for the bone morphogenetic antagonist gremlin in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 295:L272–L284

    Article  CAS  PubMed  Google Scholar 

  34. Belcastro V, Poussin C, Gebel S et al (2013) Systematic verification of upstream regulators of a computable cellular proliferation network model on non-diseased lung cells using a dedicated dataset. Bioinform Biol Insights 7:217

    Article  PubMed Central  PubMed  Google Scholar 

  35. Fry DW, Harvey PJ, Keller PR et al (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3:1427–1438

    CAS  PubMed  Google Scholar 

  36. Fornier M, Rathkopf D, Shah M et al (2007) Phase I dose-finding study of weekly docetaxel followed by flavopiridol for patients with advanced solid tumors. Clin Cancer Res 13:5841–5846

    Article  CAS  PubMed  Google Scholar 

  37. Park WJ, Kothapalli KS, Reardon HT et al (2012) A novel FADS1 isoform potentiates FADS2-mediated production of eicosanoid precursor fatty acids. J Lipid Res 53:1502–1512

    Article  PubMed Central  PubMed  Google Scholar 

  38. Sbv Improver Project Team (2013) On crowd-verification of biological networks. Bioinform Biol Insights 7:307

    Google Scholar 

  39. Ansari S, Binder J, Boue S, Di Fabio A, Hayes W, sbv Ipt et al (2013) On crowd-verification of biological networks. Bioinform Biol Insights 7:307–25, Pubmed Central PMCID: 3798292. Epub 2013/10/24. eng

    Google Scholar 

  40. sbv Improver Network Verification Challenge. https://bionet.sbvimprover.com

  41. sbv Improver Project Team, Boue S, FieldsB, Hoeng J, Park J, Peitsch MC, Schlage WK, et al. (2015) Enhancement of COPD biological networks using a web-based collaboration interface.F1000Res 4

    Google Scholar 

  42. Boue S, Talikka M, Westra JW, Hayes W, Di Fabio A, Park J et al (2015) Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems. Database 2015, PubMed

    Google Scholar 

  43. Szostak, J, Ansari, S, Madan S et al. (2015) Construction of biological networks from unstructured information based on a semiautomated curation workflow. Database. In press

    Google Scholar 

  44. Fielden MR, Brennan R, Gollub J (2007) A gene expression biomarker provides early prediction and mechanistic assessment of hepatic tumor induction by nongenotoxic chemicals. Toxicol Sci 99:90–100

    Article  CAS  PubMed  Google Scholar 

  45. Huang J, Shi W, Zhang J et al (2010) Genomic indicators in the blood predict drug-induced liver injury. Pharmacogenomics J 10:267–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Toedter G, Li K, Sague S et al (2012) Genes associated with intestinal permeability in ulcerative colitis: changes in expression following infliximab therapy. Inflamm Bowel Dis 18:1399–1410

    Article  PubMed  Google Scholar 

  47. Andersen ME, Clewell HJ 3rd, Bermudez E et al (2010) Formaldehyde: integrating dosimetry, cytotoxicity, and genomics to understand dose-dependent transitions for an endogenous compound. Toxicol Sci 118:716–731

    Article  CAS  PubMed  Google Scholar 

  48. Monticello TM, Swenberg JA, Gross EA et al (1996) Correlation of regional and nonlinear formaldehyde-induced nasal cancer with proliferating populations of cells. Cancer Res 56:1012–1022

    CAS  PubMed  Google Scholar 

  49. Hamadeh HK, Bushel PR, Jayadev S et al (2002) Gene expression analysis reveals chemical-specific profiles. Toxicol Sci 67:219–231

    Article  CAS  PubMed  Google Scholar 

  50. Waring JF, Jolly RA, Ciurlionis R et al (2001) Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicol Appl Pharmacol 175:28–42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research described in this chapter of the book was funded by Philip Morris International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marja Talikka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Talikka, M., Boue, S., Schlage, W.K. (2015). Causal Biological Network Database: A Comprehensive Platform of Causal Biological Network Models Focused on the Pulmonary and Vascular Systems. In: Hoeng, J., Peitsch, M. (eds) Computational Systems Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2778-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2778-4_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2777-7

  • Online ISBN: 978-1-4939-2778-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation