MALDI-MS-Assisted Molecular Imaging of Metabolites in Legume Plants

  • Protocol
  • First Online:
Mass Spectrometry Imaging of Small Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1203))

Abstract

Mass spectrometric imaging (MSI) is a powerful analytical tool that provides spatial information of several compounds in a single experiment. This technique has been used extensively to study proteins, peptides, and lipids, and is becoming more common for studying small molecules such as endogenous metabolites. With matrix-assisted laser desorption/ionization (MALDI)-MSI, spatial distributions of multiple metabolites can be simultaneously detected within a biological tissue section. Herein, we present a method developed specifically for imaging metabolites in legume plant roots and root nodules which can be adapted for studying metabolites in other legume organs and even other biological tissue samples. We focus on essential steps such as sample preparation and matrix application, comparing several useful techniques, and present a standard workflow that can be easily modified for different tissue types and instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 44.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singh RJ, Chung GH, Nelson RL (2007) Landmark research in legumes. Genome 50(6):525–537. doi:10.1139/g07-037

    Article  PubMed  CAS  Google Scholar 

  2. Barsch A, Patschkowski T, Niehaus K (2004) Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography–mass spectrometry. Funct Integr Genomics 4(4):219–230. doi:10.1007/s10142-004-0117-y

    Article  PubMed  CAS  Google Scholar 

  3. Desbrosses GG, Kopka J, Udvardi MK (2005) Lotus japonicus metabolic profiling. Development of gas chromatography–mass spectrometry resources for the study of plant-microbe interactions. Plant Physiol 137(4):1302–1318. doi:10.1104/pp.104.054957

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Prell J, Poole P (2006) Metabolic changes of rhizobia in legume nodules. Trends Microbiol 14(4):161–168. doi:10.1016/j.tim.2006.02.005

    Article  PubMed  CAS  Google Scholar 

  5. Kutz KK, Schmidt JJ, Li LJ (2004) In situ tissue analysis of neuropeptides by MALDI FTMS in-cell accumulation. Anal Chem 76(19):5630–5640. doi:10.1021/Ac049255b

    Article  PubMed  CAS  Google Scholar 

  6. Stemmler EA, Cashman CR, Messinger DI, Gardner NP, Dickinson PS, Christie AE (2007) High-mass-resolution direct-tissue MALDI-FTMS reveals broad conservation of three neuropeptides (APSGFLGMRamide, GYRKPPFNGSIFamide and pQDLDHVFLRFamide) across members of seven decapod crustaean infraorders. Peptides 28(11):2104–2115. doi:10.1016/j.peptides.2007.08.019

    Article  PubMed  CAS  Google Scholar 

  7. Rubakhin SS, Churchill JD, Greenough WT, Sweedler JV (2006) Profiling signaling peptides in single mammalian cells using mass spectrometry. Anal Chem 78(20):7267–7272. doi:10.1021/Ac0607010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Neupert S, Predel R (2005) Mass spectrometric analysis of single identified neurons of an insect. Biochem Biophys Res Commun 327(3):640–645. doi:10.1016/j.bbrc.2004.12.086

    Article  PubMed  CAS  Google Scholar 

  9. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4(10):828–833. doi:10.1038/Nmeth1094

    Article  PubMed  CAS  Google Scholar 

  10. Chaurand P, Norris JL, Cornett DS, Mobley JA, Caprioli RM (2006) New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J Proteome Res 5(11):2889–2900. doi:10.1021/Pr060346u

    Article  PubMed  CAS  Google Scholar 

  11. Svensson M, Boren M, Skold K, Falth M, Sjogren B, Andersson M, Svenningsson P, Andren PE (2009) Heat stabilization of the tissue proteome: a new technology for improved proteomics. J Proteome Res 8(2):974–981. doi:10.1021/Pr8006446

    Article  PubMed  CAS  Google Scholar 

  12. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69(23):4751–4760

    Article  PubMed  CAS  Google Scholar 

  13. Ye H, Gemperline E, Li L (2013) A vision for better health: mass spectrometry imaging for clinical diagnostics. Clin Chim Acta 420:11–22. doi:10.1016/j.cca.2012.10.018

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Thomas A, Charbonneau JL, Fournaise E, Chaurand P (2012) Sublimation of new matrix candidates for high spatial resolution imaging mass spectrometry of lipids: enhanced information in both positive and negative polarities after 1,5-diaminonaphthalene deposition. Anal Chem 84(4):2048–2054. doi:10.1021/ac2033547

    Article  PubMed  CAS  Google Scholar 

  15. Shroff R, Rulisek L, Doubsky J, Svatos A (2009) Acid–base-driven matrix-assisted mass spectrometry for targeted metabolomics. Proc Natl Acad Sci U S A 106(25):10092–10096. doi:10.1073/pnas.0900914106

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen S, Chen L, Wang J, Hou J, He Q, Liu J, **ong S, Yang G, Nie Z (2012) 2,3,4,5-Tetrakis(3′,4′-dihydroxylphenyl)thiophene: a new matrix for the selective analysis of low molecular weight amines and direct determination of creatinine in urine by MALDI-TOF MS. Anal Chem 84(23):10291–10297. doi:10.1021/ac3021278

    Article  PubMed  CAS  Google Scholar 

  17. Shrivas K, Hayasaka T, Sugiura Y, Setou M (2011) Method for simultaneous imaging of endogenous low molecular weight metabolites in mouse brain using TiO2 nanoparticles in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry. Anal Chem 83(19):7283–7289. doi:10.1021/ac201602s

    Article  PubMed  CAS  Google Scholar 

  18. Baluya DL, Garrett TJ, Yost RA (2007) Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry. Anal Chem 79(17):6862–6867. doi:10.1021/ac070958d

    Article  PubMed  CAS  Google Scholar 

  19. Hankin JA, Barkley RM, Murphy RC (2007) Sublimation as a method of matrix application for mass spectrometric imaging. J Am Soc Mass Spectrom 18(9):1646–1652. doi:10.1016/j.jasms.2007.06.010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Ye H, Gemperline E, Venkateshwaran M, Chen R, Delaux PM, Howes-Podoll M, Ane JM, Li L (2013) MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatula-Sinorhizobium meliloti symbiosis. Plant J 75(1):130–145. doi:10.1111/tpj.12191

  21. Robichaud G, Garrard KP, Barry JA, Muddiman DC (2013) MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J Am Soc Mass Spectrom 24(5):718–721. doi:10.1007/s13361-013-0607-z

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Schwartz SA, Reyzer ML, Caprioli RM (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 38(7):699–708. doi:10.1002/Jms.505

    Article  PubMed  CAS  Google Scholar 

  23. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. doi:10.1038/Nmeth.2019

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the University of Wisconsin Graduate School and the Wisconsin Alumni Research Foundation (WARF) and Romnes Faculty Research Fellowship program (to L.L.). E.G. acknowledges a National Science Foundation (NSF) Graduate Research Fellowship. (DGE-1256259). The acquisition of the TM sprayer was funded by an NIH shared instrument grant 1S10RR029531.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingjun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gemperline, E., Li, L. (2015). MALDI-MS-Assisted Molecular Imaging of Metabolites in Legume Plants. In: He, L. (eds) Mass Spectrometry Imaging of Small Molecules. Methods in Molecular Biology, vol 1203. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1357-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1357-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1356-5

  • Online ISBN: 978-1-4939-1357-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation