siRNA Screens Using Drosophila Cells to Identify Host Factors Required for Infection

  • Protocol
  • First Online:
Host-Bacteria Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1197))

Abstract

Drosophila melanogaster offers a powerful model system for interrogating interactions between host cells and human bacterial pathogens. Brucella, a gram-negative, facultative intracellular bacterium is the causative agent of brucellosis, a zoonotic disease of global consequence. Over the past several decades, pathogen factors that mediate Brucella infection have been identified. However, host factors that mediate infection have remained obscure. We have used the power of the Drosophila S2 cell system to identify and characterize host factors that support infection by Brucella melitensis. Host protein inositol-requiring enzyme 1 (IRE1α), a transmembrane kinase and master regulator of the eukaryotic unfolded protein response, was shown to play an important role in regulating Brucella infection, thereby providing the first glimpse of host mechanisms that are subverted by the pathogen to support its intracellular lifestyle. Furthermore, our study also established the Drosophila S2 cell as a powerful system for elucidating Brucella host factors. Here, we describe a protocol for using the Drosophila S2 cell system for studying the Brucella–host interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dorer MS, Kirton D, Bader JS, Isberg RR (2006) RNA interference analysis of Legionella in Drosophila cells: Exploitation of early secretory apparatus dynamics. PLoS Pathog 2:315–327

    CAS  Google Scholar 

  2. Ramet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz RAB (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E-coli. Nature 416:644–648

    Article  CAS  PubMed  Google Scholar 

  3. Agaisse H, Burrack LS, Philips JA, Rubin EJ, Perrimon N, Higgins DE (2005) Genome-wide RNAi screen for host factors required for intracellular bacterial infection. Science 309:1248–1251

    Article  CAS  PubMed  Google Scholar 

  4. Pielage JF, Powell KR, Kalman D, Engel JN (2008) RNAi screen reveals an AbI kinase-dependent host cell pathway involved in Pseudomonas aeruginosa internalization. PLoS Pathog 4(3):e1000031. doi:10.1371/journal.ppat.1000031

    Article  PubMed Central  PubMed  Google Scholar 

  5. Cherry S (2008) Genomic RNAi screening in Drosophila S2 cells: what have we learned about host-pathogen interactions? Curr Opin Microbiol 11:262–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cheng LW, Viala JPM, Stuurman N, Wiedemann U, Vale RD, Portnoy DA (2005) Use of RNA interference in Drosophila S2 cells to identify host pathways controlling compartmentalization of an intracellular pathogen. Proc Natl Acad Sci U S A 102:13646–13651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Philips JA, Rubin EJ, Perrimon N (2005) Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 309:1251–1253

    Article  CAS  PubMed  Google Scholar 

  8. Derre I, Pypaert M, Dautry-Varsat A, Agaisse H (2007) RNAi screen in Drosophila cells reveals the involvement of the tom complex in Chlamydia infection. PLoS Pathog 3:1446–1458

    CAS  PubMed  Google Scholar 

  9. Elwell CA, Ceesay A, Kim JH, Kalman D, Engel JN (2008) RNA interference screen identifies AbI kinase and PDGFR signaling in Chlamydia trachomatis entry. PLoS Pathog. doi:10.1371/journal.ppat.1000021

    PubMed Central  PubMed  Google Scholar 

  10. Qin QM, Pei J, Ancona V, Shaw BD, Ficht TA, de Figueiredo P (2008) RNAi screen of endoplasmic reticulum-associated host factors reveals a role for IRE1 alpha in supporting Brucella replication. PLoS Pathog 4

    Google Scholar 

  11. Gibbs EPJ (2005) Emerging zoonotic epidemics in the interconnected global community. Vet Rec 157:673–679

    Article  CAS  PubMed  Google Scholar 

  12. Sarinas PS, Chitkara RK (2003) Brucellosis. Semin Respir Infect 18:168–182

    PubMed  Google Scholar 

  13. Godfroid J, Cloeckaert A, Liautard JP, Kohler S, Fretin D, Walravens K, Garin-Bastuji B, Letesson JJ (2005) From the discovery of the Malta fever’s agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. Vet Res 36:313–326

    Article  PubMed  Google Scholar 

  14. Sauret JM, Vilissova N (2002) Human brucellosis. J Am Board Fam Pract 15:401–406

    PubMed  Google Scholar 

  15. Ariza J, Bosilkovski M, Cascio A, Colmenero JD, Corbel MJ, Falagas ME, Memish ZA, Roushan MRH, Rubinstein E, Sipsas NV, Solera J, Young EJ, Pappas G (2007) Perspectives for the treatment of brucellosis in the 21st century: the Ioannina recommendations. PLoS Med 4:1872–1878

    Article  Google Scholar 

  16. Schurig GG, Sriranganathan N, Corbel MJ (2002) Brucellosis vaccines: past, present and future. Vet Microbiol 90:479–496

    Article  CAS  PubMed  Google Scholar 

  17. Rittig MG, Kaufmann A, Robins A, Shaw B, Sprenger H, Gemsa D, Foulongne V, Rouot B, Dornand J (2003) Smooth and rough lipopolysaccharide phenotypes of Brucella induce different intracellular trafficking and cytokine/chemokine release in human monocytes. J Leukoc Biol 74:1045–1055

    Article  CAS  PubMed  Google Scholar 

  18. Monreal D, Grillo MJ, Gonzalez D, Marin CM, De Miguel MJ, Lopez-Goni I, Blasco JM, Cloeckaert A, Moriyon I (2003) Characterization of Brucella abortus O-polysaccharide and core lipopolysaccharide mutants and demonstration that a complete core is required for rough vaccines to be efficient against Brucella abortus and Brucella ovis in the mouse model. Infect Immun 71:3261–3271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. O’Callaghan D, Cazevieille C, Allardet-Servent A, Boschiroli ML, Bourg G, Foulongne V, Frutos P, Kulakov Y, Ramuz M (1999) A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 33:1210–1220

    Article  PubMed  Google Scholar 

  20. Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel AP (2003) Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 198:545–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Pei JW, Turse JE, Wu QM, Ficht TA (2006) Brucella abortus rough mutants induce macrophage oncosis that requires bacterial protein synthesis and direct interaction with the macrophage. Infect Immun 74:2667–2675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Guzman-Verri C, Chaves-Olarte E, von Eichel-Streiber C, Lopez-Goni I, Thelestam M, Arvidson S, Gorvel JP, Moreno E (2001) GTPases of the Rho subfamily are required for Brucella abortus internalization in nonprofessional phagocytes—direct activation of Cdc42. J Biol Chem 276:44435–44443

    Article  CAS  PubMed  Google Scholar 

  23. Celli J, Salcedo SP, Gorvel JP (2005) Brucella coopts the small GTPase Sar1 for intracellular replication. Proc Natl Acad Sci U S A 102:1673–1678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kahl-McDonagh MM, Ficht TA (2006) Evaluation of protection afforded by Brucella abortus and Brucella melitensis unmarked deletion mutants exhibiting different rates of clearance in BALB/c mice. Infect Immun 74:4048–4057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Pei J, Ficht TA (2004) Brucella abortus rough mutants are cytopathic for macrophages in culture. Infect Immun 72(1):440–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hong PC, Tsolis RM, Ficht TA (2000) Identification of genes required for chronic persistence of Brucella abortus in mice. Infect Immun 68:4102–4107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Allen CA, Adams LG, Ficht TA (1998) Transposon-derived Brucella abortus rough mutants are attenuated and exhibit reduced intracellular survival. Infect Immun 66:1008–1016

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Wu Q, Pei J, Turse C, Ficht TA (2006) Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol 6:102

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aseem Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pandey, A., Ding, S.L., Ficht, T.A., de Figueiredo, P. (2014). siRNA Screens Using Drosophila Cells to Identify Host Factors Required for Infection. In: Vergunst, A., O'Callaghan, D. (eds) Host-Bacteria Interactions. Methods in Molecular Biology, vol 1197. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1261-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1261-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1260-5

  • Online ISBN: 978-1-4939-1261-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation