Systematic Analysis of Endocytosis by Cellular Perturbations

  • Protocol
  • First Online:
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

Abstract

Endocytosis is an essential process of eukaryotic cells that facilitates numerous cellular and organismal functions. The formation of vesicles from the plasma membrane serves the internalization of ligands and receptors and leads to their degradation or recycling. A number of distinct mechanisms have been described over the years, several of which are only partially characterized in terms of mechanism and function. These are often referred to as novel endocytic pathways. The pathways differ in their mode of uptake and in their intracellular destination. Here, an overview of the set of cellular proteins that facilitate the different pathways is provided. Further, the approaches to distinguish between the pathways by different modes of perturbation are critically discussed, emphasizing the use of genetic tools such as dominant negative mutant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    CAS  PubMed  Google Scholar 

  2. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    CAS  PubMed  Google Scholar 

  3. Hansen CG, Nichols BJ (2009) Molecular mechanisms of clathrin-independent endocytosis. J Cell Sci 122:1713–1721

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Mercer J, Schelhaas M, Helenius A (2010) Virus entry by endocytosis. Annu Rev Biochem 79:803–833

    CAS  PubMed  Google Scholar 

  5. Osborne A, Flett A, Smythe E (2005) Endocytosis assays in intact and permeabilized cells. Current Prot Cell Biol Chapter 11, Unit 11 18

    Google Scholar 

  6. Knisely JM, Lee J, Bu G (2008) Measurement of receptor endocytosis and recycling. Methods Mol Biol 457:319–332

    CAS  PubMed  Google Scholar 

  7. Pan Q, van der Laan LJ, Janssen HL, Peppelenbosch MP (2012) A dynamic perspective of RNAi library development. Trends Biotechnol 30:206–215

    CAS  PubMed  Google Scholar 

  8. Rao DD, Senzer N, Cleary MA, Nemunaitis J (2009) Comparative assessment of siRNA and shRNA off target effects: what is slowing clinical development. Cancer Gene Ther 16:807–809

    CAS  PubMed  Google Scholar 

  9. Rao DD, Vorhies JS, Senzer N, Nemunaitis J (2009) siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 61:746–759

    CAS  PubMed  Google Scholar 

  10. Echeverri CJ, Beachy PA, Baum B et al (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3:777–779

    CAS  PubMed  Google Scholar 

  11. Echeverri CJ, Perrimon N (2006) High-throughput RNAi screening in cultured cells: a user's guide. Nat Rev Genet 7:373–384

    CAS  PubMed  Google Scholar 

  12. Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641

    PubMed Central  PubMed  Google Scholar 

  13. Tan WS, Carlson DF, Walton MW, Fahrenkrug SC, Hackett PB (2012) Precision editing of large animal genomes. Adv Genet 80:37–97

    CAS  PubMed  Google Scholar 

  14. Doyon JB, Zeitler B, Cheng J et al (2011) Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat Cell Biol 13:331–337

    CAS  PubMed  Google Scholar 

  15. Herskowitz I (1987) Functional inactivation of genes by dominant negative mutations. Nature 329:219–222

    CAS  PubMed  Google Scholar 

  16. Ivanov AI (2008) Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol 440:15–33

    CAS  PubMed  Google Scholar 

  17. Roth TF, Porter KR (1964) Yolk protein uptake in the oocyte of the mosquito Aedes aegypti L. J Cell Biol 20:313–332

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Huang F, Khvorova A, Marshall W, Sorkin A (2004) Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J Biol Chem 279:16657–16661

    CAS  PubMed  Google Scholar 

  19. Saheki Y, De Camilli P (2012) Synaptic vesicle endocytosis. Cold Spring Harb Perspect Biol 4:a005645

    PubMed  Google Scholar 

  20. Pearse BM (1982) Coated vesicles from human placenta carry ferritin, transferrin, and immunoglobulin G. Proc Natl Acad Sci U S A 79:451–455

    CAS  PubMed Central  PubMed  Google Scholar 

  21. **g SQ, Spencer T, Miller K, Hopkins C, Trowbridge IS (1990) Role of the human transferrin receptor cytoplasmic domain in endocytosis: localization of a specific signal sequence for internalization. J Cell Biol 110:283–294

    CAS  PubMed  Google Scholar 

  22. Pizarro-Cerda J, Bonazzi M, Cossart P (2010) Clathrin-mediated endocytosis: what works for small, also works for big. Bioessays 32:496–504

    CAS  PubMed  Google Scholar 

  23. Yamashiro DJ, Tycko B, Fluss SR, Maxfield FR (1984) Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell 37:789–800

    CAS  PubMed  Google Scholar 

  24. Grant BD, Donaldson JG (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10:597–608

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Hopkins CR, Miller K, Beardmore JM (1985) Receptor-mediated endocytosis of transferrin and epidermal growth factor receptors: a comparison of constitutive and ligand-induced uptake. J Cell Sci 3:173–186

    CAS  Google Scholar 

  26. Taylor MJ, Perrais D, Merrifield CJ (2011) A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol 9:e1000604

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Henne WM, Boucrot E, Meinecke M et al (2010) FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328:1281–1284

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Traub LM (2009) Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat Rev Mol Cell Biol 10:583–596

    CAS  PubMed  Google Scholar 

  29. Brett TJ, Traub LM, Fremont DH (2002) Accessory protein recruitment motifs in clathrin-mediated endocytosis. Structure 10:797–809

    CAS  PubMed  Google Scholar 

  30. Kirchhausen T (2000) Clathrin. Annu Rev Biochem 69:699–727

    CAS  PubMed  Google Scholar 

  31. Tebar F, Sorkina T, Sorkin A, Ericsson M, Kirchhausen T (1996) Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits. J Biol Chem 271:28727–28730

    CAS  PubMed  Google Scholar 

  32. Ferguson SM, Raimondi A, Paradise S (2009) Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev Cell 17:811–822

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Wigge P, Kohler K, Vallis Y et al (1997) Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol Biol Cell 8:2003–2015

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Hinshaw JE (2000) Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol 16:483–519

    CAS  PubMed  Google Scholar 

  35. Damke H, Baba T, Warnock DE, Schmid SL (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127:915–934

    CAS  PubMed  Google Scholar 

  36. Hinshaw JE, Schmid SL (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374 (6518):190–192

    Google Scholar 

  37. Warnock DE, Hinshaw JE, Schmid SL (1996) Dynamin self-assembly stimulates its GTPase activity. J Biol Chem 271:22310–22314

    CAS  PubMed  Google Scholar 

  38. Sever S, Damke H, Schmid SL (2000) Garrotes, springs, ratchets, and whips: putting dynamin models to the test. Traffic 1:385–392

    CAS  PubMed  Google Scholar 

  39. Kozlov MM (1999) Dynamin: possible mechanism of "Pinchase" action. Biophys J 77:604–616

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Bashkirov PV, Akimov SA, Evseev AI et al (2008) GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135:1276–1286

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Stowell MH, Marks B, Wigge P, McMahon HT (1999) Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nat Cell Biol 1(1):27–32

    CAS  PubMed  Google Scholar 

  42. Faelber K, Held M, Gao S et al (2012) Structural insights into dynamin-mediated membrane fission. Structure 20:1621–1628

    CAS  PubMed  Google Scholar 

  43. Kaksonen M, Sun Y, Drubin DG (2003) A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115:475–487

    CAS  PubMed  Google Scholar 

  44. Boulant S, Kural C, Zeeh JC, Ubelmann F, Kirchhausen T (2011) Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat Cell Biol 13:1124–1131

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Cureton DK, Massol RH, Whelan SP, Kirchhausen T (2010) The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis. PLoS Pathog 6:e1001127

    PubMed Central  PubMed  Google Scholar 

  46. Warren RA, Green FA, Stenberg PE, Enns CA (1998) Distinct saturable pathways for the endocytosis of different tyrosine motifs. J Biol Chem 273:17056–17063

    CAS  PubMed  Google Scholar 

  47. Hinrichsen L, Harborth J, Andrees L, Weber K, Ungewickell EJ (2003) Effect of clathrin heavy chain- and alpha-adaptin-specific small inhibitory RNAs on endocytic accessory proteins and receptor trafficking in HeLa cells. J Biol Chem 278:45160–45170

    CAS  PubMed  Google Scholar 

  48. Cremona O, Di Paolo G, Wenk MR et al (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99:179–188

    CAS  PubMed  Google Scholar 

  49. Schlossman DM, Schmid SL, Braell W, Rothman JE (1984) An enzyme that removes clathrin coats: purification of an uncoating ATPase. J Cell Biol 99:723–733

    CAS  PubMed  Google Scholar 

  50. Ungewickell E, Ungewickell H, Holstein SE et al (1995) Role of auxilin in uncoating clathrin-coated vesicles. Nature 378:632–635

    CAS  PubMed  Google Scholar 

  51. Cosson P, de Curtis I, Pouysségur J, Griffiths G, Davoust J (1989) Low cytoplasmic pH inhibits endocytosis and transport from the trans-Golgi network to the cell surface. J Cell Biol 108:377–387

    CAS  PubMed  Google Scholar 

  52. Heuser JE, Anderson RG (1989) Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J Cell Biol 108:389–400

    CAS  PubMed  Google Scholar 

  53. Doxsey SJ, Brodsky FM, Blank GS, Helenius A (1987) Inhibition of endocytosis by anti-clathrin antibodies. Cell 50:453–463

    CAS  PubMed  Google Scholar 

  54. Liu SH, Marks MS, Brodsky FM (1998) A dominant-negative clathrin mutant differentially affects trafficking of molecules with distinct sorting motifs in the class II major histocompatibility complex (MHC) pathway. J Cell Biol 140:1023–1037

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Acton SL, Brodsky FM (1990) Predominance of clathrin light chain LCb correlates with the presence of a regulated secretory pathway. J Cell Biol 111:1419–1426

    CAS  PubMed  Google Scholar 

  56. Motley A, Bright NA, Seaman MN, Robinson MS (2003) Clathrin-mediated endocytosis in AP-2-depleted cells. J Cell Biol 162:909–918

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Quirin K, Eschli B, Scheu I et al (2008) Lymphocytic choriomeningitis virus uses a novel endocytic pathway for infectious entry via late endosomes. Virology 378:21–33

    CAS  PubMed  Google Scholar 

  58. von Kleist L, Stahlschmidt W, Bulut H et al (2011) Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell 146:471–484

    Google Scholar 

  59. van der Bliek AM, Redelmeier TE, Damke H et al (1993) Mutations in human dynamin block an intermediate stage in coated vesicle formation. J Cell Biol 122:553–563

    PubMed  Google Scholar 

  60. Damke H, Binns DD, Ueda H et al (2001) Dynamin GTPase domain mutants block endocytic vesicle formation at morphologically distinct stages. Mol Biol Cell 12:2578–2589

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Sidiropoulos PN, Miehe M, Bock T et al (2012) Dynamin 2 mutations in Charcot-Marie-Tooth neuropathy highlight the importance of clathrin-mediated endocytosis in myelination. Brain 135:1395–1411

    PubMed  Google Scholar 

  62. Macia E, Ehrlich M, Massol R et al (2006) Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10:839–850

    CAS  PubMed  Google Scholar 

  63. McCluskey A, Daniel JA, Hadzic G et al (2013) Building a better dynasore: the dyngo compounds potently inhibit dynamin and endocytosis. Traffic 14:1272–1289

    CAS  PubMed  Google Scholar 

  64. McGeachie AB, Odell LR, Quan A et al (2013) Pyrimidyn compounds: dual-action small molecule pyrimidine-based dynamin inhibitors. ACS Chem Biol 8(7):1507–1518

    CAS  PubMed  Google Scholar 

  65. Nesterov A, Carter RE, Sorkina T, Gill GN, Sorkin A (1999) Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant mu2 subunit and its effects on endocytosis. EMBO J 18:2489–2499

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Gaidarov I, Keen JH (1999) Phosphoinositide-AP-2 interactions required for targeting to plasma membrane clathrin-coated pits. J Cell Biol 146:755–764

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Robinson MS, Sahlender DA, Foster SD (2010) Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Dev Cell 18:324–331

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Wang L-H, Rothberg KG, Anderson RGW (1993) Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation materials and methods. J Cell Biol 123:1107–1117

    CAS  PubMed  Google Scholar 

  69. Ogiso T, Iwaki M, Mori K (1981) Fluidity of human erythrocyte membrane and effect of chlorpromazine on fluidity and phase separation of membrane. Biochim Biophys Acta 649:325–335

    CAS  PubMed  Google Scholar 

  70. Walenga RW, Opas EE, Feinstein MB (1981) Differential effects of calmodulin antagonists on phospholipases A2 and C in thrombin-stimulated platelets. J Biol Chem 256:12523–12528

    CAS  PubMed  Google Scholar 

  71. Schelhaas M, Shah B, Holzer M (2012) Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog 8:e1002657

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Benmerah A, Lamaze C, Bègue B (1998) AP-2/Eps15 interaction is required for receptor-mediated endocytosis. J Cell Biol 140:1055–1062

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Simpson F, Hussain NK, Qualmann B et al (1999) SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Nat Cell Biol 1:119–124

    CAS  PubMed  Google Scholar 

  74. Qualmann B, Kelly RB (2000) Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J Cell Biol 148:1047–1062

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Kessels MM, Engqvist-Goldstein AE, Drubin DG, Qualmann B (2001) Mammalian Abp1, a signal-responsive F-actin-binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin. J Cell Biol 153:351–366

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Massol RH, Boll W, Griffin AM, Kirchhausen T (2006) A burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating. Proc Natl Acad Sci U S A 103:10265–10270

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Maldonado-Baez L, Wendland B (2006) Endocytic adaptors: recruiters, coordinators and regulators. Trends Cell Biol 16:505–513

    CAS  PubMed  Google Scholar 

  78. Szymkiewicz I, Shupliakov O, Dikic I (2004) Cargo- and compartment-selective endocytic scaffold proteins. Biochem J 383(Pt 1):1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Montesano R, Roth J, Robert A, Orci L (1982) Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature 296:651–653

    CAS  PubMed  Google Scholar 

  80. Rothberg KG, Heuser JE, Donzell WC et al (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    CAS  PubMed  Google Scholar 

  81. Scherer PE, Lewis RY, Volonte D et al (1997) Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 272:29337–29346

    CAS  PubMed  Google Scholar 

  82. Song KS, Scherer PE, Tang Z et al (1996) Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271:15160–15165

    CAS  PubMed  Google Scholar 

  83. Anderson HA, Chen Y, Norkin LC (1996) Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol Biol Cell 7:1825–1834

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Gilbert J, Benjamin T (2004) Uptake pathway of polyomavirus via ganglioside GD1a. J Virol 78:12259–12267

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Eash S, Querbes W, Atwood WJ (2004) Infection of vero cells by BK virus is dependent on caveolae. J Virol 78:11583–11590

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483

    CAS  PubMed  Google Scholar 

  87. Engel S, Heger T, Mancini R et al (2011) Role of endosomes in simian virus 40 entry and infection. J Virol 85:4198–4211

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Monier S, Parton RG, Vogel F et al (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 6:911–927

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Scheiffele P, Verkade P, Fra AM et al (1998) Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J Cell Biol 140:795–806

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Hayer A, Stoeber M, Bissig C, Helenius A (2010) Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 11:361–382

    CAS  PubMed  Google Scholar 

  91. Ludwig A, Howard G, Mendoza-Topaz C et al (2013) Molecular composition and ultrastructure of the caveolar coat complex. PLoS Biol 11:e1001640

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Hansen CG, Bright NA, Howard G, Nichols BJ (2009) SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol 11:807–814

    CAS  PubMed Central  PubMed  Google Scholar 

  93. McMahon KA, Zajicek H, Li WP et al (2009) SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J 28:1001–1015

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Stoeber M, Stoeck IK, Hanni C et al (2012) Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. EMBO J 31:2350–2364

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Parton RG, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127:1199–1215

    CAS  Google Scholar 

  96. Minshall RD, Tiruppathi C, Vogel SM et al (2000) Endothelial cell-surface gp60 activates vesicle formation and trafficking via G(i)-coupled Src kinase signaling pathway. J Cell Biol 150:1057–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Pelkmans L, Puntener D, Helenius A (2002) Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296:535–539

    CAS  PubMed  Google Scholar 

  98. McIntosh PO, Schnitzer A (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 141:101–114

    PubMed Central  PubMed  Google Scholar 

  99. Klein IK, Predescu DN, Sharma T (2009) Intersectin-2L regulates caveola endocytosis secondary to Cdc42-mediated actin polymerization. J Biol Chem 284:25953–25961

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Predescu SA, Predescu DN, Malik AB (2007) Molecular determinants of endothelial transcytosis and their role in endothelial permeability. Am J Physiol Lung Cell Mol Physiol 293:L823–L842

    CAS  PubMed  Google Scholar 

  101. Rodal SK, Skretting G, Garred O et al (1999) Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 10:961–974

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Subtil A, Gaidarov I, Kobylarz K et al (1999) Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci U S A 96:6775–6780

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Orlandi PA, Fishman PH (1998) Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 141:905–915

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478

    CAS  PubMed  Google Scholar 

  105. Coue M, Brenner SL, Spector I, Korn ED (1987) Inhibition of actin polymerization by latrunculin A. FEBS Lett 213:316–318

    CAS  PubMed  Google Scholar 

  106. Bubb MR, Spector I, Beyer BB, Fosen KM (2000) Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J Biol Chem 275:5163–5170

    CAS  PubMed  Google Scholar 

  107. Drab M, Verkade P, Elger M (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    CAS  PubMed  Google Scholar 

  108. Chen Y, Norkin LC (1999) Extracellular simian virus 40 transmits a signal that promotes virus enclosure within caveolae. Exp Cell Res 246:83–90

    CAS  PubMed  Google Scholar 

  109. Pelkmans L, Zerial M (2005) Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436:128–133

    CAS  PubMed  Google Scholar 

  110. Damm E-M, Pelkmans L, Kartenbeck J et al (2005) Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 168:477–488

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Le PU, Guay G, Altschuler Y, Nabi IR (2002) Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J Biol Chem 277:3371–3379

    CAS  PubMed  Google Scholar 

  112. Pelkmans L, Bürli T, Zerial M, Helenius A (2004) Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118:767–780

    CAS  PubMed  Google Scholar 

  113. Glebov OO, Bright NA, Nichols BJ (2006) Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 8:46–54

    CAS  PubMed  Google Scholar 

  114. Frick M, Bright NA, Riento K et al (2007) Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol 17:1151–1156

    CAS  PubMed  Google Scholar 

  115. Cremona ML, Matthies HJ, Pau K et al (2011) Flotillin-1 is essential for PKC-triggered endocytosis and membrane microdomain localization of DAT. Nat Neurosci 14:469–477

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Ge L, Qi W, Wang LJ et al (2011) Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake. Proc Natl Acad Sci U S A 108:551–556

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Ludwig A, Otto GP, Riento K et al (2010) Flotillin microdomains interact with the cortical cytoskeleton to control uropod formation and neutrophil recruitment. J Cell Biol 191:771–781

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Neumann-Giesen C, Fernow I, Amaddii M, Tikkanen R (2007) Role of EGF-induced tyrosine phosphorylation of reggie-1/flotillin-2 in cell spreading and signaling to the actin cytoskeleton. J Cell Sci 120:395–406

    CAS  Google Scholar 

  119. Riento K, Frick M, Schafer I, Nichols BJ (2009) Endocytosis of flotillin-1 and flotillin-2 is regulated by Fyn kinase. J Cell Sci 122:912–918

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Babuke T, Ruonala M, Meister M et al (2009) Hetero-oligomerization of reggie-1/flotillin-2 and reggie-2/flotillin-1 is required for their endocytosis. Cell Signal 21:1287–1297

    CAS  PubMed  Google Scholar 

  121. Vassilieva EV, Ivanov AI, Nusrat A (2009) Flotillin-1 stabilizes caveolin-1 in intestinal epithelial cells. Biochem Biophys Res Commun 379:460–465

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Kokubo H, Helms JB, Ohno-Iwashita Y et al (2003) Ultrastructural localization of flotillin-1 to cholesterol-rich membrane microdomains, rafts, in rat brain tissue. Brain Res 965:83–90

    CAS  PubMed  Google Scholar 

  123. Lewis WH (1931) Pinocytosis. Bull Johns Hopkins Hosp 49:17

    Google Scholar 

  124. Swanson JA, Watts C (1995) Macropinocytosis. Trends Cell Biol 5:424–428

    CAS  PubMed  Google Scholar 

  125. Haigler HT, McKanna JA, Cohen S (1979) Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor. J Cell Biol 83:82–90

    CAS  PubMed  Google Scholar 

  126. Amyere M, Payrastre B, Krause U (2000) Constitutive macropinocytosis in oncogene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C. Mol Biol Cell 11:3453–3467

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Miyata Y, Nishida E, Koyasu S, Yahara I, Sakai H (1989) Protein kinase C-dependent and -independent pathways in the growth factor-induced cytoskeletal reorganization. J Biol Chem 264:15565–15568

    CAS  PubMed  Google Scholar 

  128. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    CAS  PubMed  Google Scholar 

  129. Suetsugu S, Yamazaki D, Kurisu S, Takenawa T (2003) Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev Cell 5:595–609

    CAS  PubMed  Google Scholar 

  130. Krueger EW, Orth JD, Cao H, McNiven MA (2003) A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol Biol Cell 14:1085–1096

    CAS  PubMed Central  Google Scholar 

  131. Koivusalo M, Welch C, Hayashi H et al (2010) Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol 188:547–563

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Dharmawardhane S, Schurmann A, Sells MA (2000) Regulation of macropinocytosis by p21-activated kinase-1. Mol Biol Cell 11:3341–3352

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Liberali P, Kakkonen E, Turacchio G et al (2008) The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO J 27:970–981

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Lim JP, Gleeson PA (2011) Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 89:836–843

    CAS  PubMed  Google Scholar 

  135. Mercer J, Helenius A (2012) Gul** rather than sip**: macropinocytosis as a way of virus entry. Curr Opin Microbiol 15:490–499

    PubMed  Google Scholar 

  136. Steinman RM, Silver JM, Cohn ZA (1974) Pinocytosis in fibroblasts. Quantitative studies in vitro. J Cell Biol 63:949–969

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Kerr MC, Lindsay MR, Luetterforst R et al (2006) Visualisation of macropinosome maturation by the recruitment of sorting nexins. J Cell Sci 119:3967–3980

    CAS  PubMed  Google Scholar 

  138. Suetsugu S, Miki H, Takenawa T (1999) Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with the Arp2/3 complex. Biochem Biophys Res Commun 260:296–302

    CAS  PubMed  Google Scholar 

  139. Machesky LM, Insall RH (1998) Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 8:1347–1356

    CAS  PubMed  Google Scholar 

  140. Chen LM, Hobbie S, Galan JE (1996) Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science 274:2115–2118

    CAS  PubMed  Google Scholar 

  141. Mercer J, Knebel S, Schmidt FI et al (2010) Vaccinia virus strains use distinct forms of macropinocytosis for host-cell entry. Proc Natl Acad Sci USA 107:9346–9351

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Mercer J, Helenius A (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535

    CAS  PubMed  Google Scholar 

  143. Dowrick P, Kenworthy P, McCann B, Warn R (1993) Circular ruffle formation and closure lead to macropinocytosis in hepatocyte growth factor/scatter factor-treated cells. Eur J Cell Biol 61:44–53

    CAS  PubMed  Google Scholar 

  144. Fretz M, ** J, Conibere R et al (2006) Effects of Na+/H+ exchanger inhibitors on subcellular localisation of endocytic organelles and intracellular dynamics of protein transduction domains HIV-TAT peptide and octaarginine. J Control Release 116:247–254

    CAS  PubMed  Google Scholar 

  145. Lagana A, Vadnais J, Le PU et al (2000) Regulation of the formation of tumor cell pseudopodia by the Na(+)/H(+) exchanger NHE1. J Cell Sci 113:3649–3662

    CAS  PubMed  Google Scholar 

  146. Deacon SW, Beeser A, Fukui JA et al (2008) An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 15:322–331

    CAS  PubMed  Google Scholar 

  147. Arcaro A, Wymann MP (1993) Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor : the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J 301:297–301

    Google Scholar 

  148. Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269:5241–5248

    CAS  PubMed  Google Scholar 

  149. Sabharanjak S, Sharma P, Parton RG, Mayor S (2002) GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2:411–423

    CAS  PubMed  Google Scholar 

  150. Kirkham M, Parton RG (2005) Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta 1746:349–363

    CAS  PubMed  Google Scholar 

  151. Kirkham M, Fujita A, Chadda R et al (2005) Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol 168:465–476

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Lundmark R, Doherty GJ, Howes MT et al (2008) The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr Biol 18:1802–1808

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Chadda R, Howes MT, Plowman SJ et al (2007) Cholesterol-sensitive Cdc42 activation regulates actin polymerization for endocytosis via the GEEC pathway. Traffic 8:702–717

    CAS  PubMed  Google Scholar 

  154. Kumari S, Mayor S (2008) ARF1 is directly involved in dynamin-independent endocytosis. Nat Cell Biol 10:30–41

    CAS  PubMed  Google Scholar 

  155. Nonnenmacher M, Weber T (2011) Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. Cell Host Microbe 10:563–576

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Subtil A, Hémar A, Dautry-Varsat A (1994) Rapid endocytosis of interleukin 2 receptors when clathrin-coated pit endocytosis is inhibited. J Cell Sci 107:3461–3468

    CAS  PubMed  Google Scholar 

  157. Lamaze C, Dujeancourt A, Baba T et al (2001) Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell 7:661–671

    CAS  PubMed  Google Scholar 

  158. Sauvonnet N, Dujeancourt A, Dautry-Varsat A (2005) Cortactin and dynamin are required for the clathrin-independent endocytosis of gammac cytokine receptor. J Cell Biol 168:155–163

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Grassart A, Dujeancourt A, Lazarow PB, Dautry-Varsat A, Sauvonnet N (2008) Clathrin-independent endocytosis used by the IL-2 receptor is regulated by Rac1, Pak1 and Pak2. EMBO Rep 9:356–362

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Basquin C, Malarde V, Mellor P et al (2013) The signalling factor PI3K is a specific regulator of the clathrin-independent dynamin-dependent endocytosis of IL-2 receptors. J Cell Sci 126:1099–1108

    CAS  PubMed  Google Scholar 

  161. Radhakrishna H, Donaldson JG (1997) ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J Cell Biol 139:49–61

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Caplan S, Naslavsky N, Hartnell LM et al (2002) A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane. EMBO J 21:2557–2567

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Naslavsky N, Weigert R, Donaldson JG (2004) Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. Mol Biol Cell 15:3542–3552

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Naslavsky N, Weigert R, Donaldson JG (2003) Convergence of non-clathrin- and clathrin-derived endosomes involves Arf6 inactivation and changes in phosphoinositides. Mol Biol Cell 14:417–431

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Brown FD, Rozelle AL, Yin HL, Balla T, Donaldson JG (2001) Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J Cell Biol 154:1007–1017

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Donaldson JG (2003) Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J Biol Chem 278:41573–41576

    CAS  PubMed  Google Scholar 

  167. D'Souza-Schorey C, Li G, Colombo MI, Stahl PD (1995) A regulatory role for ARF6 in receptor-mediated endocytosis. Science 267:1175–1178

    PubMed  Google Scholar 

  168. Zhang Q, Cox D, Tseng CC, Donaldson JG, Greenberg S (1998) A requirement for ARF6 in Fcgamma receptor-mediated phagocytosis in macrophages. J Biol Chem 273:19977–19981

    CAS  PubMed  Google Scholar 

  169. Vidal-Quadras M, Gelabert-Baldrich M, Soriano-Castell D et al (2011) Rac1 and calmodulin interactions modulate dynamics of ARF6-dependent endocytosis. Traffic 12:1879–1896

    CAS  PubMed  Google Scholar 

  170. Matlin KS, Reggio H, Helenius A, Simons K (1981) Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol 91:601–613

    CAS  PubMed  Google Scholar 

  171. Sieczkarski SB, Whittaker GR (2002) Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol 76:10455–10464

    CAS  PubMed Central  PubMed  Google Scholar 

  172. de Vries E, Tscherne DM, Wienholts MJ et al (2011) Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog 7:e1001329

    PubMed Central  PubMed  Google Scholar 

  173. Rust MJ, Lakadamyali M, Zhang F, Zhuang X (2004) Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol 11:567–573

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Sieczkarski SB, Whittaker GR (2005) Characterization of the host cell entry of filamentous influenza virus. Arch Virol 150:1783–1796

    CAS  PubMed  Google Scholar 

  175. Spoden G, Kuhling L, Cordes N et al (2013) Human papillomavirus types 16, 18, and 31 share similar endocytic requirements for entry. J Virol 87:7765–7773

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Rojek JM, Perez M, Kunz S (2008) Cellular entry of lymphocytic choriomeningitis virus. J Virol 82:1505–1517

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623

    CAS  PubMed  Google Scholar 

  178. Karakawa WW, Sutton A, Schneerson R, Karpas A, Vann WF (1988) Capsular antibodies induce type-specific phagocytosis of capsulated Staphylococcus aureus by human polymorphonuclear leukocytes. Infect Immun 56:1090–1095

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Doshi N, Mitragotri S (2010) Macrophages recognize size and shape of their targets. PLoS One 5:e10051

    PubMed Central  PubMed  Google Scholar 

  180. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103:4930–4934

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Kaplan G (1977) Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand J Immunol 6:797–807

    CAS  PubMed  Google Scholar 

  182. Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721

    CAS  PubMed  Google Scholar 

  183. Wright SD, Silverstein SC (1983) Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med 158:2016–2023

    CAS  PubMed  Google Scholar 

  184. Stein M, Gordon S (1991) Regulation of tumor necrosis factor (TNF) release by murine peritoneal macrophages: role of cell stimulation and specific phagocytic plasma membrane receptors. Eur J Immunol 21:431–437

    CAS  PubMed  Google Scholar 

  185. Hackam DJ, Rotstein OD, Schreiber A, Zhang WJ, Grinstein S (1997) Rho is required for the initiation of calcium signaling and phagocytosis by Fcgamma receptors in macrophages. J Exp Med 186:955–966

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Laudanna C, Campbell JJ, Butcher EC (1996) Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 271:981–983

    CAS  PubMed  Google Scholar 

  187. Paolini R, Jouvin MH, Kinet JP (1991) Phosphorylation and dephosphorylation of the high-affinity receptor for immunoglobulin E immediately after receptor engagement and disengagement. Nature 353:855–858

    CAS  PubMed  Google Scholar 

  188. Crowley MT, Costello PS, Fitzer-Attas CJ et al (1997) A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. J Exp Med 186:1027–1039

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Rowley RB, Burkhardt AL, Chao HG, Matsueda GR, Bolen JB (1995) Syk protein-tyrosine kinase is regulated by tyrosine-phosphorylated Ig alpha/Ig beta immunoreceptor tyrosine activation motif binding and autophosphorylation. J Biol Chem 270:11590–11594

    CAS  PubMed  Google Scholar 

  190. Kurosaki T, Takata M, Yamanashi Y et al (1994) Syk activation by the Src-family tyrosine kinase in the B cell receptor signaling. J Exp Med 179:1725–1729

    CAS  PubMed  Google Scholar 

  191. Matsuda M, Park JG, Wang DC et al (1996) Abrogation of the Fc gamma receptor IIA-mediated phagocytic signal by stem-loop Syk antisense oligonucleotides. Mol Biol Cell 7:1095–1106

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Schieven GL, Kirihara JM, Burg DL, Geahlen RL, Ledbetter JA (1993) p72syk tyrosine kinase is activated by oxidizing conditions that induce lymphocyte tyrosine phosphorylation and Ca2+ signals. J Biol Chem 268:16688–16692

    CAS  PubMed  Google Scholar 

  193. Cox D, Chang P, Zhang Q et al (1997) Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 186:1487–1494

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Massol P, Montcourrier P, Guillemot JC, Chavrier P (1998) Fc receptor-mediated phagocytosis requires CDC42 and Rac1. EMBO J 17:6219–6229

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Bowers B, Olszewski TE, Hyde J (1981) Morphometric analysis of volumes and surface areas in membrane compartments during endocytosis in Acanthamoeba. J Cell Biol 88:509–515

    CAS  PubMed  Google Scholar 

  196. Lennartz MR, Yuen AF, Masi SM et al (1997) Phospholipase A2 inhibition results in sequestration of plasma membrane into electronlucent vesicles during IgG-mediated phagocytosis. J Cell Sci 110:2041–2052

    CAS  PubMed  Google Scholar 

  197. Hackam DJ, Rotstein OD, Sjolin C et al (1998) v-SNARE-dependent secretion is required for phagocytosis. Proc Natl Acad Sci U S A 95:11691–11696

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Cox D, Tseng CC, Bjekic G, Greenberg S (1999) A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J Biol Chem 274:1240–1247

    CAS  PubMed  Google Scholar 

  199. Gold ES, Underhill DM, Morrissette NS et al (1999) Dynamin 2 is required for phagocytosis in macrophages. J Exp Med 190:1849–1856

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Di A, Nelson DJ, Bindokas V et al (2003) Dynamin regulates focal exocytosis in phagocytosing macrophages. Mol Biol Cell 14:2016–2028

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Kinchen JM, Doukoumetzidis K, Almendinger J et al (2008) A pathway for phagosome maturation during engulfment of apoptotic cells. Nat Cell Biol 10:556–566

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Cox D, Chang P, Kurosaki T, Greenberg S (1996) Syk tyrosine kinase is required for immunoreceptor tyrosine activation motif-dependent actin assembly. J Biol Chem 271:16597–16602

    CAS  PubMed  Google Scholar 

  203. Zhang J, Berenstein EH, Evans RL, Siraganian RP (1996) Transfection of Syk protein tyrosine kinase reconstitutes high affinity IgE receptor-mediated degranulation in a Syk-negative variant of rat basophilic leukemia RBL-2H3 cells. J Exp Med 184:71–79

    CAS  PubMed  Google Scholar 

  204. Benmerah A, Bayrou M, Cerf-Bensussan N, Dautry-Varsa A (1999) Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J Cell Sci 112:1303–1311

    CAS  PubMed  Google Scholar 

  205. Ford MGJ, Mills IG, Peter BJ et al (2002) Curvature of clathrin-coated pits driven by epsin. Nature 419:361–366

    CAS  PubMed  Google Scholar 

  206. Bonazzi M, Spano S, Turacchio G et al (2005) CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat Cell Biol 7:570–580

    CAS  PubMed  Google Scholar 

  207. Miller PJ, Johnson DI (1994) Cdc42p GTPase is involved in controlling polarized cell growth in Schizosaccharomyces pombe. Mol Cell Biol 14:1075–1083

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Madaule P, Axel R, Myers AM (1987) Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 84:779–783

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    CAS  PubMed  Google Scholar 

  210. Zhang S, Han J, Sells MA et al (1995) Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J Biol Chem 270:23934–23936

    CAS  PubMed  Google Scholar 

  211. Ridley AJ, Hall A (1994) Signal transduction pathways regulating Rho-mediated stress fibre formation: requirement for a tyrosine kinase. EMBO J 13:2600–2610

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Dascher C, Balch WE (1994) Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J Biol Chem 269:1437–1448

    CAS  PubMed  Google Scholar 

  213. Zhao Z, Manser E, Chen X et al (1998) A conserved negative regulatory region in α PAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42. Mol Cell Biol 18:2153–2163

    CAS  PubMed Central  PubMed  Google Scholar 

  214. Tang Y, Chen Z, Ambrose D et al (1997) Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol Cell Biol 17:4454–4464

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Vadlamudi RK, Adam L, Wang RA et al (2000) Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 275:36238–36244

    CAS  PubMed  Google Scholar 

  216. Hara K, Yonezawa K, Sakaue H et al (1994) 1-Phosphatidylinositol 3-kinase activity is required for insulin-stimulated glucose transport but not for RAS activation in CHO cells. Proc Natl Acad Sci U S A 91:7415–7419

    CAS  PubMed Central  PubMed  Google Scholar 

  217. Garcia-Paramio P, Cabrerizo Y, Bornancin F, Parker PJ (1998) The broad specificity of dominant inhibitory protein kinase C mutants infers a common step in phosphorylation. Biochem J 333:631–636

    CAS  PubMed Central  PubMed  Google Scholar 

  218. Hirai H, Varmus HE (1990) SH2 mutants of c-src that are host dependent for transformation are trans-dominant inhibitors of mouse cell transformation by activated c-src. Gene Dev 4:2342–2352

    CAS  PubMed  Google Scholar 

  219. Mejillano M, Yamamoto M, Rozelle AL (2001) Regulation of apoptosis by phosphatidylinositol 4,5-bisphosphate inhibition of caspases, and caspase inactivation of phosphatidylinositol phosphate 5-kinases. J Biol Chem 276:1865–1872

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank members of the Schelhaas laboratory for helpful comments and suggestions on the manuscript. Work in the Schelhaas laboratory is supported by the German Research Foundation (DFG) (grant SCHE 1552/2-1, Collaborative Research Centre SFB629/A16, International Graduate School GRK1409/C2, and partly by EXC 1003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Schelhaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kühling, L., Schelhaas, M. (2014). Systematic Analysis of Endocytosis by Cellular Perturbations. In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation