Use of Transmembrane FRET to Investigate the Internalization of Glycosylated Proteins

  • Protocol
  • First Online:
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1174))

Abstract

The importance of glycans in various cellular events, especially intracellular and intercellular trafficking of proteins, has been reported in numerous studies. Here, we present a novel method to monitor endocytosis of proteins of interest bearing a specific glycan modification. Using a fluorescence resonance energy transfer technique, we investigated the role of glycan structure on the internalization of insulin-responsive glucose transporter GLUT4. We found that sialylated glycoforms of GFP-tagged GLUT4 appear to be internalized more slowly than non-sialylated GLUT4 upon insulin removal. This novel glycan imaging tool allows probing functional roles of specific glycan modifications in endocytosis of various proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dube DH, Bertozzi CR (2003) Metabolic oligosaccharide engineering as a tool for glycobiology. Curr Opin Chem Biol 7:616–625

    Article  CAS  PubMed  Google Scholar 

  2. Du J, Meledeo MA, Wang Z et al (2009) Metabolic glycoengineering: sialic acid and beyond. Glycobiology 19:1382–1401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Zaro BW, Yang YY, Hang HC, Pratt MR (2011) Chemical reporters for fluorescent detection and identification of O-GlcNAc-modified proteins reveal glycosylation of the ubiquitin ligase NEDD4-1. Proc Natl Acad Sci U S A 108:8146–8151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010

    Article  CAS  PubMed  Google Scholar 

  5. Vocadlo DJ, Hang HC, Kim EJ, Hanover JA, Bertozzi CR (2003) A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci U S A 100:9116–9121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hsu TL, Hanson SR, Kishikawa K et al (2007) Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells. Proc Natl Acad Sci U S A 104:2614–2619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Baskin JM, Prescher JA, Laughlin ST et al (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci U S A 104:16793–16797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR (2008) In vivo imaging of membrane-associated glycans in develo** zebrafish. Science 320:664–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Baskin JM, Dehnert KW, Laughlin ST, Amacher SL, Bertozzi CR (2010) Visualizing envelo** layer glycans during zebrafish early embryogenesis. Proc Natl Acad Sci U S A 107:10360–10365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dehnert KW, Beahm BJ, Huynh TT et al (2011) Metabolic labeling of fucosylated glycans in develo** zebrafish. ACS Chem Biol 6:547–552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Taniguchi N, Miyoshi E, Gu J, Honke K, Matsumoto A (2006) Decoding sugar functions by identifying target glycoproteins. Curr Opin Struct Biol 16:561–566

    Article  CAS  PubMed  Google Scholar 

  12. Muhlenhoff M, Manegold A, Windfuhr M, Gotza B, Gerardy-Schahn R (2001) The impact of N-glycosylation on the functions of polysialyltransferases. J Biol Chem 276:34066–34073

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Inoue S, Gu J et al (2005) Dysregulation of TGF-beta1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proc Natl Acad Sci U S A 102:15791–15796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wang X, Gu J, Ihara H et al (2006) Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J Biol Chem 281:2572–2577

    Article  CAS  PubMed  Google Scholar 

  15. Partridge EA, Le Roy C, Di Guglielmo GM et al (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306:120–124

    Article  CAS  PubMed  Google Scholar 

  16. Ohtsubo K, Takamatsu S, Minowa MT et al (2005) Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 123:1307–1321

    Article  CAS  PubMed  Google Scholar 

  17. Kitazume S, Imamaki R, Ogawa K et al (2010) Alpha2,6-sialic acid on platelet endothelial cell adhesion molecule (PECAM) regulates its homophilic interactions and downstream antiapoptotic signaling. J Biol Chem 285:6515–6521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lau KS, Partridge EA, Grigorian A et al (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129:123–134

    Article  CAS  PubMed  Google Scholar 

  19. Haga Y, Ishii K, Hibino K et al (2012) Visualizing specific protein glycoforms by transmembrane fluorescence resonance energy transfer. Nat Commun 3:907

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by a Grant-in-Aid for Exploratory Research (25650041) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to T. S.) and a Grant-in-Aid for JSPS postdoctoral fellow (to Y. H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Haga, Y., Suzuki, T. (2014). Use of Transmembrane FRET to Investigate the Internalization of Glycosylated Proteins. In: Ivanov, A. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 1174. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0944-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0944-5_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0943-8

  • Online ISBN: 978-1-4939-0944-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation