Purification of Planarian Stem Cells Using a Draq5-Based FACS Approach

  • Protocol
  • First Online:
Tissue Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2805))

Abstract

Planarians are flatworms that have the remarkable ability to regenerate entirely new animals. This regenerative ability requires abundant adult stem cells called neoblasts, which are relatively small in size, sensitive to irradiation and the only proliferative cells in the animal. Despite the lack of cell surface markers, fluorescence-activated cell sorting (FACS) protocols have been developed to discriminate and isolate neoblasts, based on DNA content. Here, we describe a protocol that combines staining of far-red DNA dye Draq5, Calcein-AM and DAPI, along with a shortened processing time. This profiling strategy can be used to functionally characterize the neoblast population in pharmacologically-treated or gene knockdown animals. Highly purified neoblasts can be analyzed with downstream assays, such as in situ hybridization and RNA sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rink JC (2018) Stem cells, patterning and regeneration in planarians: self-organization at the organismal scale. Methods Mol Biol 1774:57–172

    Article  CAS  PubMed  Google Scholar 

  2. Reddien PW (2018) The cellular and molecular basis for planarian regeneration. Cell 175:327–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rink JC (2013) Stem cell systems and regeneration in planaria. Dev Genes Evol 223:67–84

    Article  PubMed  Google Scholar 

  4. Hayashi T, Asami M, Higuchi S, Shibata N, Agata K (2006) Isolation of planarian X-ray-sensitive stem cells by fluorescence-activated cell sorting. Develop Growth Differ 48:371–380

    Article  Google Scholar 

  5. Romero BT, Evans DJ, Aboobaker AA (2012) FACS analysis of the planarian stem cell compartment as a tool to understand regenerative mechanisms. Methods Mol Biol 916:167–179

    Article  CAS  PubMed  Google Scholar 

  6. Hayashi T, Agata K (2018) A subtractive FACS method for isolation of planarian stem cells and neural cells. Methods Mol Biol 1774:467–478

    Article  CAS  PubMed  Google Scholar 

  7. Mohamed Haroon M, Lakshmanan V, Sarkar SR, Lei K, Vemula PK, Palakodeti D (2021) Mitochondrial state determines functionally divergent stem cell population in planaria. Stem Cell Rep 16:1302–1316

    Article  CAS  Google Scholar 

  8. Molinaro AM, Lindsay-Mosher N, Pearson BJ (2021) Identification of TOR-responsive slow-cycling neoblasts in planarians. EMBO Rep 22:e50292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shiroor DA, Bohr TE, Adler CE (2020) Injury delays stem cell apoptosis after radiation in planarians. Curr Biol 30:2166–2174.e3

    Article  CAS  PubMed  Google Scholar 

  10. Kang H, Sánchez Alvarado A (2009) Flow cytometry methods for the study of cell-cycle parameters of planarian stem cells. Dev Dyn 238:1111–1117

    Article  CAS  PubMed  Google Scholar 

  11. Eisenhoffer GT, Kang H, Sánchez Alvarado A (2008) Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 3:327–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Solana J, Kao D, Mihaylova Y, Jaber-Hijazi F, Malla S, Wilson R, Aboobaker A (2012) Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNAseq, RNA interference and irradiation approach. Genome Biol 13:R19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sánchez Alvarado A (2005) SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310:1327–1330

    Article  CAS  PubMed  Google Scholar 

  14. van Wolfswinkel JC, Wagner DE, Reddien PW (2014) Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell 15:326–339

    Article  PubMed  PubMed Central  Google Scholar 

  15. Scimone ML, Kravarik KM, Lapan SW, Reddien PW (2014) Neoblast specialization in regeneration of the planarian Schmidtea mediterranea. Stem Cell Rep 3:339–352

    Article  CAS  Google Scholar 

  16. Wagner DE, Wang IE, Reddien PW (2011) Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332:811–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zeng A, Li H, Guo L, Gao X, McKinney S, Wang Y, Yu Z, Park J, Semerad C, Ross E (2018) Prospectively isolated tetraspanin+ neoblasts are adult pluripotent stem cells underlying planaria regeneration. Cell 173:1593–1608.e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peiris TH, García-Ojeda ME, Oviedo NJ (2016) Alternative flow cytometry strategies to analyze stem cells and cell death in planarians. Regeneration (Oxf) 3:123–135

    Article  PubMed  Google Scholar 

  19. Peiris TH, Ramirez D, Barghouth PG, Ofoha U, Davidian D, Weckerle F, Oviedo NJ (2016) Regional signals in the planarian body guide stem cell fate in the presence of genomic instability. Development 143:1697–1709

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Labbé RM, Irimia M, Currie KW, Lin A, Zhu SJ, Brown DDR, Ross EJ, Voisin V, Bader GD, Blencowe BJ et al (2012) A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals. Stem Cells 30:1734–1745

    Article  PubMed  Google Scholar 

  21. Duncan EM, Chitsazan AD, Seidel CW, Sánchez Alvarado A (2015) Set1 and MLL1/2 target distinct sets of functionally different genomic loci in vivo. Cell Rep 13:2741–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wenemoser D, Lapan SW, Wilkinson AW, Bell GW, Reddien PW (2012) A molecular wound response program associated with regeneration initiation in planarians. Genes Dev 26:988–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vásquez-Doorman C, Petersen CP (2014) zic-1 Expression in planarian Neoblasts after injury controls anterior pole regeneration. PLoS Genet 10:e1004452

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhu SJ, Hallows SE, Currie KW, Xu C, Pearson BJ (2015) A mex3 homolog is required for differentiation during planarian stem cell lineage development. eLife 4:e07025. Available at: https://doi.org/10.7554/eLife.07025

    Article  PubMed  PubMed Central  Google Scholar 

  25. Onal P, Grün D, Adamidi C, Rybak A, Solana J, Mastrobuoni G, Wang Y, Rahn H-P, Chen W, Kempa S et al (2012) Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. EMBO J 31:2755–2769

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sasidharan V, Lu Y-C, Bansal D, Dasari P, Poduval D, Seshasayee A, Resch AM, Graveley BR, Palakodeti D (2013) Identification of neoblast- and regeneration-specific miRNAs in the planarian Schmidtea mediterranea. RNA 19:1394–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dattani A, Kao D, Mihaylova Y, Abnave P, Hughes S, Lai A, Sahu S, Aboobaker AA (2018) Epigenetic analyses of planarian stem cells demonstrate conservation of bivalent histone modifications in animal stem cells. Genome Res 28:1543–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mihaylova Y, Abnave P, Kao D, Hughes S, Lai A, Jaber-Hijazi F, Kosaka N, Aboobaker AA (2018) Conservation of epigenetic regulation by the MLL3/4 tumour suppressor in planarian pluripotent stem cells. Nat Commun 9:3633

    Article  PubMed  PubMed Central  Google Scholar 

  29. Verma P, Waterbury CKM, Duncan EM (2021) Set1 targets genes with essential identity and tumor-suppressing functions in planarian stem cells. Genes 12:1182. Available at: https://doi.org/10.3390/genes12081182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Raz AA, Wurtzel O, Reddien PW (2021) Planarian stem cells specify fate yet retain potency during the cell cycle. Cell Stem Cell 28:1307. Available at: https://doi.org/10.1016/j.stem.2021.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fincher CT, Wurtzel O, de Hoog T, Kravarik KM, Reddien PW (2018) Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360:eaaq1736

    Article  PubMed  PubMed Central  Google Scholar 

  32. Plass M, Solana J, Wolf FA, Ayoub S, Misios A, Glažar P, Obermayer B, Theis FJ, Kocks C, Rajewsky N (2018) Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science 360:eaaq1723

    Article  PubMed  Google Scholar 

  33. Niu K, Xu H, **ong YZ, Zhao Y, Gao C, Seidel CW, Pan X, Ying Y, Lei K (2021) Canonical and early lineage-specific stem cell types identified in planarian SirNeoblasts. Cell Regen 10:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wurtzel O, Oderberg IM, Reddien PW (2017) Planarian epidermal stem cells respond to positional cues to promote cell-type diversity. Dev Cell 40:491–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. García-Castro H, Kenny NJ, Iglesias M, Álvarez-Campos P, Mason V, Elek A, Schönauer A, Sleight VA, Neiro J, Aboobaker A et al (2021) ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics. Genome Biol 22:89

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wurtzel O, Cote LE, Poirier A, Satija R, Regev A, Reddien PW (2015) A generic and cell-type-specific wound response precedes regeneration in planarians. Dev Cell 35:632–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lei K, Zhang W, Chen J, McKinney SA, Ross EJ, Lee HC, Sánchez Alvarado A (2023) Pluripotency retention and exogenous mRNA introduction in planarian stem cells in culture. iScience 26(2):106001

    Google Scholar 

  38. Wang K, Adler CE (2023) CRISPR/Cas9-based depletion of 16S ribosomal RNA improves library complexity of single-cell RNA-sequencing in planarians. BMC Genomics 24:625

    Google Scholar 

  39. Merryman MS, Sánchez Alvarado A, Jenkin JC (2018) Culturing planarians in the laboratory. Methods Mol Biol 1774:241–258

    Article  CAS  PubMed  Google Scholar 

  40. Newmark PA, Sánchez Alvarado A (2022) Schmidtea happens: Re-establishing the planarian as a model for studying the mechanisms of regeneration. Curr Top Dev Biol 147:307–344

    Google Scholar 

  41. Moritz S, Stöckle F, Ortmeier C, Schmitz H, Rodríguez-Esteban G, Key G, Gentile L (2012) Heterogeneity of planarian stem cells in the S/G2/M phase. Int J Dev Biol 56:117–125

    Google Scholar 

  42. Fincher CT, Wurtzel O, de Hoog T, Kravarik KM, Reddien PW (2018) Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360(6391):eaaq1736

    Google Scholar 

  43. Shiroor DA, Wang K, Sanketi BD, Tapper JK, Adler CE (2023) Inhibition of ATM kinase rescues planarian regeneration after lethal radiation. EMBO reports 24:e56112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn E. Adler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, KT., Tapper, J., Adler, C.E. (2024). Purification of Planarian Stem Cells Using a Draq5-Based FACS Approach. In: Nelson, C.M. (eds) Tissue Morphogenesis. Methods in Molecular Biology, vol 2805. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3854-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3854-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3853-8

  • Online ISBN: 978-1-0716-3854-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation