Microfluidic 3D Cytotoxic Assay

  • Protocol
  • First Online:
Microfluidics Diagnostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2804))

  • 220 Accesses

Abstract

Microfluidic-based cytotoxic assays provide high physiological relevance with the potential to replace conventional animal experiments and two-dimensional (2D) assays. Here, a 3D method utilizing a microfluidic platform for analysis of lymphocyte cytotoxicity is introduced in detail, including platform design, cell culture method, real-time cytotoxic assay setup, and image-based analysis. A 2D experimental method is used for comparison, which effectively demonstrates the advantages of 3D microfluidic platforms in closely recapitulating immune responses within the tumor microenvironment. Moreover, a wide range of experimental possibilities and applications using microfluidic 3D cytotoxic assays is introduced in this chapter, along with their capabilities, limitations, and future outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 169.99
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 207.99
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galon J, Bruni D (2020) Tumor immunology and tumor evolution: intertwined histories. Immunity 52:55–81

    Article  CAS  PubMed  Google Scholar 

  2. Zhang J et al (2022) Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment. Adv Drug Deliv Rev 187:114365

    Article  CAS  PubMed  Google Scholar 

  3. Bader JE, Voss K, Rathmell JC (2020) Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol Cell 78:1019–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Buoncervello M, Gabriele L, Toschi E (2019) The Janus face of tumor microenvironment targeted by immunotherapy. Int Journal of Mol Sci 20:4320

    Article  CAS  Google Scholar 

  5. Khalil DN et al (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13:273–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sterner RC, Sterner RM (2021) CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 11:69

    Article  PubMed  PubMed Central  Google Scholar 

  7. Giraldo NA et al (2019) The clinical role of the TME in solid cancer. Br J Cancer 120:45–53

    Article  PubMed  Google Scholar 

  8. Rongvaux A et al (2014) Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 32:364–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vesely MD et al (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  CAS  PubMed  Google Scholar 

  10. Tseng D et al (2013) Anti-CD47 antibody mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc of Nat Acad of Sci 110:11103–11108

    Article  CAS  Google Scholar 

  11. Hirt C et al (2014) In vitro 3D models of tumor-immune system interaction. Adv Drug Deliv Rev 79-80:145–154

    Article  CAS  PubMed  Google Scholar 

  12. Sontheimer-Phelps A, Hassell BA, Ingber DE (2019) Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer 19(2):65–81

    Article  CAS  PubMed  Google Scholar 

  13. Park D et al (2019) High-throughput microfluidic 3D cytotoxicity assay for cancer immunotherapy (CACI-IMPACT platform). Front Immunol 10:1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park D et al (2021) Aspiration-mediated hydrogel micropatterning using rail-based open microfluidic devices for high-throughput 3D cell culture. Sci Rep 11:19986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ronteix G et al (2022) High resolution microfluidic assay and probabilistic modeling reveal cooperation between T cells in tumor killing. Nat Commun 13:3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song J et al (2021) High-throughput 3D in vitro tumor vasculature model for real-time monitoring of immune cell infiltration and cytotoxicity. Front Immunol 12:733317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pavesi A et al (2015) Using microfluidics to investigate tumor cell extravasation and T-cell immunotherapies. Annu Int Conf IEEE Eng Med Biol Soc 2015:1853–1856

    CAS  PubMed  Google Scholar 

  18. Nguyen M et al (2018) Dissecting effects of anti-cancer drugs and cancer-associated fibroblasts by on-chip reconstitution of immunocompetent tumor microenvironments. Cell Rep 25:3884–3893.e3

    Article  CAS  PubMed  Google Scholar 

  19. Businaro L et al (2013) Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. Lab Chip 13:229–239

    Article  CAS  PubMed  Google Scholar 

  20. Beckwith AL, Velásquez-García LF, Borenstein JT (2019) Microfluidic model for evaluation of immune checkpoint inhibitors in human tumors. Adv Healthc Mater 8:e1900289

    Article  PubMed  Google Scholar 

  21. Cui X et al (2020) Dissecting the immunosuppressive tumor microenvironments in glioblastoma- on-a-chip for optimized PD-1 immunotherapy. elife 9:e52253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fang T et al (2019) Remodeling of the tumor microenvironment by a chemokine/anti-PD-L1 nanobody fusion protein. Mol Pharm 16:2838–2844

    Article  CAS  PubMed  Google Scholar 

  23. Biselli E et al (2017) Organs on chip approach: a tool to evaluate cancer-immune cells interactions. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  24. Aung A et al (2020) An engineered tumor-on-a-chip device with breast cancer-immune cell interactions for assessing T-cell recruitment. Cancer Res 80:263–275

    Article  CAS  PubMed  Google Scholar 

  25. Lee SWL et al (2018) Characterizing the role of monocytes in T cell cancer immunotherapy using a 3D microfluidic model. Front Immunol 9:416

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ayuso JM et al (2021) Microfluidic tumor-on-a-chip model to evaluate the role of tumor environmental stress on NK cell exhaustion, science. Advances 7:eabc2331

    CAS  Google Scholar 

  27. Ke L-Y et al (2018) Cancer immunotherapy μ-environment LabChip: taking advantage of optoelectronic tweezers. Lab Chip 18:106–114

    Article  CAS  Google Scholar 

  28. Surendran V et al (2021) A novel tumor-immune microenvironment (TIME)-on-chip mimics three dimensional neutrophil-tumor dynamics and neutrophil extracellular traps (NETs)-mediated collective tumor invasion. Biofabrication 13:035029

    Article  CAS  Google Scholar 

  29. Bi Y et al (2020) Tumor-on-a-chip platform to interrogate the role of macrophages in tumor progression. Integr Biol (Camb) 12:221–232

    Article  PubMed  Google Scholar 

  30. Ayuso JM et al (2019) Evaluating natural killer cell cytotoxicity against solid tumors using a microfluidic model. Onco Targets Ther 8:1553477

    Google Scholar 

  31. Parlato S et al (2017) 3D microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells. Sci Rep 7:1–16

    Article  Google Scholar 

  32. Parlato S et al (2021) Tumor-on-a-chip platforms to study cancer–immune system crosstalk in the era of immunotherapy. Lab Chip 21:234–253

    Article  CAS  PubMed  Google Scholar 

  33. Kim S et al (2021) Microfluidic tumor vasculature model to recapitulate an endothelial immune barrier expressing FasL. ACS Biomater Sci Eng 7:1230–1241

    Article  CAS  PubMed  Google Scholar 

  34. Miccoli B, Braeken D, Li Y-CE (2018) Brain-on-a-chip devices for drug screening and disease modeling applications. Curr Pharm Des 24:5419–5436

    Article  CAS  PubMed  Google Scholar 

  35. Iyer V et al (2022) Advancing microfluidic diagnostic chips for clinical use. Lab Chip 22:3110–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46:2396–2406

    Article  CAS  PubMed  Google Scholar 

  37. Van Meer B et al (2017) Small molecule absorption by PDMS in the context of drug response bioassays. Biochem Biophys Research Comm 482:323–328

    Article  Google Scholar 

  38. Leung CM et al (2022) A guide to the organ-on-a-chip. Nat Rev Methods Primers 2:33

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noo Li Jeon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Choi, H., Cheong, S., **, A., Park, D., Jeon, N.L. (2024). Microfluidic 3D Cytotoxic Assay. In: Taly, V., Descroix, S., Perez-Toralla, K. (eds) Microfluidics Diagnostics. Methods in Molecular Biology, vol 2804. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3850-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3850-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3849-1

  • Online ISBN: 978-1-0716-3850-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation