Multimodal Control of Bacterial Gene Expression by Red and Blue Light

  • Protocol
  • First Online:
Synthetic Biology

Abstract

By applying sensory photoreceptors, optogenetics realizes the light-dependent control of cellular events and state. Given reversibility, noninvasiveness, and exquisite spatiotemporal precision, optogenetic approaches enable innovative use cases in cell biology, synthetic biology, and biotechnology. In this chapter, we detail the implementation of the pREDusk, pREDawn, pCrepusculo, and pAurora optogenetic circuits for controlling bacterial gene expression by red and blue light, respectively. The protocols provided here guide the practical use and multiplexing of these circuits, thereby enabling graded protein production in bacteria at analytical and semi-preparative scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 169.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hegemann P (2008) Algal sensory photoreceptors. Annu Rev Plant Biol 59:167–189

    Article  CAS  PubMed  Google Scholar 

  2. Möglich A, Yang X, Ayers RA et al (2010) Structure and function of plant photoreceptors. Annu Rev Plant Biol 61:21–47

    Article  PubMed  Google Scholar 

  3. Deisseroth K, Feng G, Majewska AK et al (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380–10386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Losi A, Gardner KH, Möglich A (2018) Blue-light receptors for optogenetics. Chem Rev 118:10659–10709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang K, Beyer HM, Zurbriggen MD et al (2021) The red edge: bilin-binding photoreceptors as optogenetic tools and fluorescence reporters. Chem Rev 121:14906–14956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nagel G, Ollig D, Fuhrmann M et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  7. Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  9. Zhang F, Wang L-P, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

  10. Ohlendorf R, Möglich A (2022) Light-regulated gene expression in bacteria: fundamentals, advances, and perspectives. Front Bioeng Biotechnol 10:1029403

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ziegler T, Möglich A (2015) Photoreceptor engineering. Front Mol Biosci 2:30

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ohlendorf R, Vidavski RR, Eldar A et al (2012) From dusk till dawn: one-plasmid systems for light-regulated gene expression. J Mol Biol 416:534–542

    Article  CAS  PubMed  Google Scholar 

  13. Baumschlager A, Aoki SK, Khammash M (2017) Dynamic blue light-inducible T7 RNA polymerases (Opto-T7RNAPs) for precise spatiotemporal gene expression control. ACS Synth Biol 6:2157–2167

    Article  CAS  PubMed  Google Scholar 

  14. Han T, Chen Q, Liu H (2017) Engineered photoactivatable genetic switches based on the bacterium phage T7 RNA polymerase. ACS Synth Biol 6:357–366

    Article  CAS  PubMed  Google Scholar 

  15. Ding Q, Ma D, Liu G-Q et al (2020) Light-powered Escherichia coli cell division for chemical production. Nat Commun 11:2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dietler J, Schubert R, Krafft TGA et al (2021) A light-oxygen-voltage receptor integrates light and temperature. J Mol Biol 433:167107

    Article  CAS  PubMed  Google Scholar 

  17. Ranzani AT, Wehrmann M, Kaiser J et al (2022) Light-dependent control of bacterial expression at the mRNA level. ACS Synth Biol 11:3482–3492

    Article  CAS  PubMed  Google Scholar 

  18. Levskaya A, Chevalier AA, Tabor JJ et al (2005) Synthetic biology: engineering Escherichia coli to see light. Nature 438:441–442

    Article  CAS  PubMed  Google Scholar 

  19. Tabor JJ, Levskaya A, Voigt CA (2011) Multichromatic control of gene expression in Escherichia coli. J Mol Biol 405:315–324

    Article  CAS  PubMed  Google Scholar 

  20. Multamäki E, García de Fuentes A, Sieryi O et al (2022) Optogenetic control of bacterial expression by red light. ACS Synth Biol 11:3354–3367

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fushimi K, Narikawa R (2019) Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum. Curr Opin Struct Biol 57:39–46

    Article  CAS  PubMed  Google Scholar 

  22. Diensthuber RP, Bommer M, Gleichmann T et al (2013) Full-length structure of a sensor histidine kinase pinpoints coaxial coiled coils as signal transducers and modulators. Structure 21:1127–1136

    Article  CAS  PubMed  Google Scholar 

  23. Davis SJ, Vener AV, Vierstra RD (1999) Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286:2517–2520

    Article  CAS  PubMed  Google Scholar 

  24. Möglich A, Ayers RA, Moffat K (2009) Design and signaling mechanism of light-regulated histidine kinases. J Mol Biol 385:1433–1444

    Article  PubMed  Google Scholar 

  25. Buschiazzo A, Trajtenberg F (2019) Two-component sensing and regulation: how do histidine kinases talk with response regulators at the molecular level? Annu Rev Microbiol 73:507–528

    Article  CAS  PubMed  Google Scholar 

  26. Möglich A (2019) Signal transduction in photoreceptor histidine kinases. Protein Sci 28:1923–1946

    Article  PubMed  PubMed Central  Google Scholar 

  27. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    Article  CAS  PubMed  Google Scholar 

  28. Weber AM, Kaiser J, Ziegler T et al (2019) A blue light receptor that mediates RNA binding and translational regulation. Nat Chem Biol 15:1085–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mathes T, Vogl C, Stolz J et al (2009) In vivo generation of flavoproteins with modified cofactors. J Mol Biol 385:1511–1518

    Article  CAS  PubMed  Google Scholar 

  30. Strack RL, Strongin DE, Bhattacharyya D et al (2008) A noncytotoxic DsRed variant for whole-cell labeling. Nat Methods 5:955–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen AW, Daugherty PS (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23:355–360

    Article  CAS  PubMed  Google Scholar 

  32. Hennemann J, Iwasaki RS, Grund TN et al (2018) Optogenetic control by pulsed illumination. Chembiochem 19:1296–1304

    Article  CAS  PubMed  Google Scholar 

  33. Dietler J, Stabel R, Möglich A (2019) Pulsatile illumination for photobiology and optogenetics. In: Methods in enzymology. Elsevier, pp 227–248

    Google Scholar 

  34. Möglich A (2018) An open-source, cross-platform resource for nonlinear least-squares curve fitting. ACS Publications

    Book  Google Scholar 

  35. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the European Commission (FET Open NEUROPA, grant 863214 to A.M.), the Deutsche Forschungsgemeinschaft (grant MO2192/4-2 to A.M), the Academy of Finland (grant 330678 to H.T.), a three-year grant from the University of Helsinki (to E.M and H.T.), the Finnish Cultural Foundation (grant 00220697 to E.M.), and a Bayreuth Humboldt Centre Senior Fellowship 2020 (to H.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Möglich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meier, S.S.M., Multamäki, E., Ranzani, A.T., Takala, H., Möglich, A. (2024). Multimodal Control of Bacterial Gene Expression by Red and Blue Light. In: Braman, J.C. (eds) Synthetic Biology. Methods in Molecular Biology, vol 2760. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3658-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3658-9_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3657-2

  • Online ISBN: 978-1-0716-3658-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation