Immunolabel-First-Expand-Later Expansion Microscopy Approach Using Stable STED Dyes

  • Protocol
  • First Online:
Cilia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2725))

Abstract

Multiple expansion microscopy approaches have been successfully used in the analysis of centrioles, centrosomes, and cilia, hel** to reveal the localization of numerous centrosomal and ciliary proteins at nanoscale resolution. In this chapter, we describe the use of two stable STED dyes in combination with expansion microscopy, which allows the robust detection by conventional and STED microscopy of proteins immunolabeled prior to sample expansion. We demonstrate the stability of these dyes during the crosslinking, polymerization, and denaturation steps of an expansion protocol thereby allowing their use in an immunolabel-first-expand-later approach. Our protocol overcomes the frequent technical limitation of poor, unreproducible binding of primary antibodies to proteins after denaturation. We demonstrate the applicability of this approach by analyzing both a centriole appendage protein Cep164 and a ciliary protein ARL13B.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bornens M (2021) Centrosome organization and functions. Curr Opin Struct Biol 66:199–206

    Article  CAS  PubMed  Google Scholar 

  2. Nigg EA, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139(4):663–678

    Article  CAS  PubMed  Google Scholar 

  3. Arquint C, Gabryjonczyk AM, Nigg EA (2014) Centrosomes as signalling centres. Philos Trans R Soc Lond Ser B Biol Sci 369(1650):20130464

    Article  Google Scholar 

  4. Gonczy P, Hatzopoulos GN (2019) Centriole assembly at a glance. J Cell Sci 132(4):jcs228833

    Article  CAS  PubMed  Google Scholar 

  5. Sullenberger C et al (2020) With age comes maturity: biochemical and structural transformation of a human centriole in the making. Cell 9(6):1429

    Article  CAS  Google Scholar 

  6. Tanos BE et al (2013) Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev 27(2):163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Delgehyr N, Sillibourne J, Bornens M (2005) Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J Cell Sci 118(Pt 8):1565–1575

    Article  CAS  PubMed  Google Scholar 

  8. Bowler M et al (2019) High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy. Nat Commun 10(1):993

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vorobjev IA, Chentsov Yu S (1982) Centrioles in the cell cycle. I. Epithelial cells. J Cell Biol 93(3):938–949

    Article  CAS  PubMed  Google Scholar 

  10. Gaudin N et al (2022) Evolutionary conservation of centriole rotational asymmetry in the human centrosome. eLife 11:e72382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van den Hoek H et al (2022) In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains. Science 377(6605):543–548

    Article  PubMed  Google Scholar 

  12. Le Guennec M et al (2020) A helical inner scaffold provides a structural basis for centriole cohesion. Sci Adv 6(7):eaaz4137

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schweizer N et al (2021) Sub-centrosomal map** identifies augmin-γTuRC as part of a centriole-stabilizing scaffold. Nat Commun 12(1):6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vásquez-Limeta A et al (2022) CPAP insufficiency leads to incomplete centrioles that duplicate but fragment. J Cell Biol 221(5):e202108018

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tian Y et al (2021) Superresolution characterization of core centriole architecture. J Cell Biol 220(4):e202005103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gambarotto D et al (2019) Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat Methods 16(1):71–74

    Article  CAS  PubMed  Google Scholar 

  17. Sahabandu N et al (2019) Expansion microscopy for the analysis of centrioles and cilia. J Microsc 276(3):145–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ku T et al (2016) Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol 34(9):973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Graser S et al (2007) Cep164, a novel centriole appendage protein required for primary cilium formation. J Cell Biol 179(2):321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cajanek L, Nigg EA (2014) Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proc Natl Acad Sci U S A 111(28):E2841–E2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caspary T, Larkins CE, Anderson KV (2007) The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 12(5):767–778

    Article  CAS  PubMed  Google Scholar 

  22. Fisher S et al (2020) ARF family GTPases with links to cilia. Am J Physiol Cell Physiol 319(2):C404–c418

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kong D, Loncarek J (2021) Analyzing centrioles and cilia by expansion microscopy. Methods Mol Biol 2329:249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Meredith Metzger and Dr. Catherine Sullenberger for critical reading of the manuscript. This work is supported by the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute to JL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadranka Loncarek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kong, D., Luvsanjav, D., Loncarek, J. (2024). Immunolabel-First-Expand-Later Expansion Microscopy Approach Using Stable STED Dyes. In: Mennella, V. (eds) Cilia. Methods in Molecular Biology, vol 2725. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3507-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3507-0_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3506-3

  • Online ISBN: 978-1-0716-3507-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation