Targeting Intracellular Antigens with pMHC-Binding Antibodies: A Phage Display Approach

  • Protocol
  • First Online:
Phage Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2702))

Abstract

Antibodies that bind peptide-MHC (pMHC) complex in a manner akin to T cell receptor (TCR) have not only helped in understanding the mechanism of TCR-pMHC interactions in the context of T cell biology but also spurred considerable interest in recent years as potential cancer therapeutics. Traditional methods to generate such antibodies using hybridoma and B cell sorting technologies are sometimes inadequate, possibly due to the small contribution of peptide to the overall B cell epitope space on the surface of the pMHC complex (typical peptide MW = 1 kDa versus MHC MW = 45 kDa) and to the multiple efficiency limiting steps inherent in these methods. In this chapter we describe phage display approaches, including a cell panning strategy, for the rapid generation of such antibodies with high specificity and affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 295.39
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith GP (1985) Filamentous fusion phage – novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317. https://doi.org/10.1126/Science.4001944

    Article  CAS  PubMed  Google Scholar 

  2. Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G et al (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides1. J Mol Biol 296(1):57–86. https://doi.org/10.1006/jmbi.1999.3444

    Article  CAS  PubMed  Google Scholar 

  3. Griffiths AD, Williams SC, Hartley O, Tomlinson IM, Waterhouse P, Crosby WL et al (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J 13(14):3245–3260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Balint RF, Larrick JW (1993) Antibody engineering by parsimonious mutagenesis. Gene 137(1):109–118. https://doi.org/10.1016/0378-1119(93)90258-5

    Article  CAS  PubMed  Google Scholar 

  5. Devlin JJ, Panganiban LC, Devlin PE (1990) Random peptide libraries: a source of specific protein binding molecules. Science 249(4967):404–406

    Article  CAS  PubMed  Google Scholar 

  6. Luzzago A, Felici F, Tramontano A, Pessi A, Cortese R (1993) Mimicking of discontinuous epitopes by phage-displayed peptides, I. Epitope map** of human H ferritin using a phage library of constrained peptides. Gene 128(1):51–57. https://doi.org/10.1016/0378-1119(93)90152-S

    Article  CAS  PubMed  Google Scholar 

  7. McLafferty MA, Kent RB, Ladner RC, Markland W (1993) M13 bacteriophage displaying disulfide-constrained microproteins. Gene 128(1):29–36. https://doi.org/10.1016/0378-1119(93)90149-W

    Article  CAS  PubMed  Google Scholar 

  8. Cwirla SE, Peters EA, Barrett RW, Dower WJ (1990) Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci U S A 87(16):6378–6382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348(6301):552–554

    Article  CAS  PubMed  Google Scholar 

  10. Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19(15):4133–4137. https://doi.org/10.1093/nar/19.15.4133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gram H, Marconi LA, Barbas CF, Collet TA, Lerner RA, Kang AS (1992) In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc Natl Acad Sci U S A 89(8):3576–3580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. ørum H, Andersen PS, øster A, Johansen LK, Riise E, Bjørnvad M et al (1993) Efficient method for construction comprehensive murine Fab antibody libraries displayed on phage. Nucleic Acids Res 21(19):4491–4498. https://doi.org/10.1093/nar/21.19.4491

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hoogenboom HR, Winter G (1992) By-passing immunisation. J Mol Biol 227(2):381–388. https://doi.org/10.1016/0022-2836(92)90894-P

    Article  CAS  PubMed  Google Scholar 

  14. Barbas CF 3rd (1995) Synthetic human antibodies. Nat Med 1(8):837–839

    Article  CAS  PubMed  Google Scholar 

  15. Dao T, Yan S, Veomett N, Pankov D, Zhou L, Korontsvit T et al (2013) Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med 5(176):176ra33. https://doi.org/10.1126/scitranslmed.3005661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurosawa N, Midorikawa A, Ida K, Fudaba YW, Isobe M (2020) Development of a T-cell receptor mimic antibody targeting a novel Wilms tumor 1-derived peptide and analysis of its specificity. Cancer Sci 111(10):3516–3526. https://doi.org/10.1111/cas.14602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chames P, Hufton SE, Coulie PG, Uchanska-Ziegler B, Hoogenboom HR (2000) Direct selection of a human antibody fragment directed against the tumor T-cell epitope HLA-A1-MAGE-A1 from a nonimmunized phage-Fab library. Proc Natl Acad Sci U S A 97(14):7969–7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu H, Xu Y, **ang J, Long L, Green S, Yang Z et al (2016) Targeting alpha-fetoprotein (AFP)-MHC complex with CAR T cell therapy for liver cancer. Clin Cancer Res. https://doi.org/10.1158/1078-0432.ccr-16-1203

  19. Ahmed M, Lopez-Albaitero A, Pankov D, Santich BH, Liu H, Yan S et al (2018) TCR-mimic bispecific antibodies targeting LMP2A show potent activity against EBV malignancies. JCI Insight 3(4). https://doi.org/10.1172/jci.insight.97805

  20. Chang AY, Dao T, Gejman RS, Jarvis CA, Scott A, Dubrovsky L et al (2017) A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest 127(7):2705–2718. https://doi.org/10.1172/JCI92335

    Article  PubMed  PubMed Central  Google Scholar 

  21. Klatt MG, Dao T, Yang Z, Liu J, Mun SS, Dacek MM et al (2022) A TCR mimic CAR T cell specific for NDC80 is broadly reactive with solid tumors and hematological malignancies. Blood. https://doi.org/10.1182/blood.2021012882

  22. Douglass J, Hsiue EH-C, Mog BJ, Hwang MS, DiNapoli SR, Pearlman AH et al (2021) Bispecific antibodies targeting mutant RAS neoantigens. Sci Immunol 6(57):eabd5515. https://doi.org/10.1126/sciimmunol.abd5515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hsiue EH-C, Wright KM, Douglass J, Hwang MS, Mog BJ, Pearlman AH et al (2021) Targeting a neoantigen derived from a common TP53 mutation. Science 371(6533):eabc8697. https://doi.org/10.1126/science.abc8697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barbas CF 3rd, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88(18):7978–7982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schoonbroodt S, Steukers M, Viswanathan M, Frans N, Timmermans M, Wehnert A et al (2008) Engineering antibody heavy chain CDR3 to create a phage display Fab library rich in antibodies that bind charged carbohydrates. J Immunol 181(9):6213–6221

    Article  CAS  PubMed  Google Scholar 

  26. Rauchenberger R, Borges E, Thomassen-Wolf E, Rom E, Adar R, Yaniv Y et al (2003) Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3. J Biol Chem 278(40):38194–38205. https://doi.org/10.1074/jbc.M303164200

    Article  CAS  PubMed  Google Scholar 

  27. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  28. Liepe J, Marino F, Sidney J, Jeko A, Bunting DE, Sette A et al (2016) A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science 354(6310):354–358. https://doi.org/10.1126/science.aaf4384

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nai-Kong V. Cheung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, Z., Wu, Z., Santich, B.H., Liu, J., Liu, C., Cheung, NK.V. (2023). Targeting Intracellular Antigens with pMHC-Binding Antibodies: A Phage Display Approach. In: Hust, M., Lim, T.S. (eds) Phage Display. Methods in Molecular Biology, vol 2702. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3381-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3381-6_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3380-9

  • Online ISBN: 978-1-0716-3381-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation