Probing Mitotic Chromosome Mechanics Using Optical Tweezers

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2694))

  • 1076 Accesses

Abstract

During mitosis, cells compact their DNA into rodlike shapes, four orders of magnitude shorter than the DNA backbone contour length. We describe an experimental protocol to isolate and study these intricate mitotic chromosomes using optical tweezers. We touch upon the technical details of the required optical tweezers and microfluidics setup, including advanced force calibration procedures to accurately measure the high forces the chromosomes withstand. The procedure used to isolate mitotic chromosomes, including biotinylation of the telomeric ends to facilitate trap** them in optical tweezers, is described in detail. Finally, we provide a protocol for carrying out optical tweezers experiments on the isolated mitotic chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibcus JH, Samejima K, Goloborodko A et al (2018) A pathway for mitotic chromosome formation. Science 80:359

    Google Scholar 

  2. Walther N, Hossain MJ, Politi AZ et al (2018) A quantitative map of human Condensins provides new insights into mitotic chromosome architecture. J Cell Biol 217:2309–2328

    Article  Google Scholar 

  3. Houchmandzadeh B, Marko JF, Chatenay D et al (1997) Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration. J Cell Biol 139:1–12

    Article  Google Scholar 

  4. Sun M, Kawamura R, Marko JF (2011) Micromechanics of human mitotic chromosomes. Phys Biol 8:15003

    Article  ADS  Google Scholar 

  5. Sun M, Biggs R, Hornick J et al (2018) Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold. Chromosom Res 26:277–295

    Article  Google Scholar 

  6. Meijering AEC, Sarlós K, Nielsen CF et al (2022) Nonlinear mechanics of human mitotic chromosomes. Nature 605:545–550

    Article  ADS  Google Scholar 

  7. Jahnel M, Behrndt M, Jannasch A et al (2011) Measuring the complete force field of an optical trap. Opt Lett 36:1260–1262

    Article  ADS  Google Scholar 

  8. Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594–612

    Article  ADS  Google Scholar 

  9. Farré A, Marsà F, Montes-Usategui M (2012) Optimized back-focal-plane interferometry directly measures forces of optically trapped particles. Opt Express 20:12270–12291

    Article  ADS  Google Scholar 

  10. Català F, Marsà F, Montes-Usategui M et al (2017) Influence of experimental parameters on the laser heating of an optical trap. Sci Rep 7:16052

    Article  ADS  Google Scholar 

  11. Peterman EJG, Gittes F, Schmidt CF (2003) Laser-induced heating in optical traps. Biophys J 84:1308–1316

    Article  Google Scholar 

  12. Tolić-Nørrelykke SF, Schäffer E, Howard J et al (2006) Calibration of optical tweezers with positional detection in the back focal plane. Rev Sci Instrum 77:103101

    Article  ADS  Google Scholar 

  13. Jun Y, Tripathy SK, Narayanareddy BRJ et al (2014) Calibration of optical tweezers for in vivo force measurements: how do different approaches compare? Biophys J 107:1474–1484

    Article  Google Scholar 

  14. Spector DL, Goldman RD, Leinwand LA (1998) Cells: a laboratory manual. Cold Spring Harbor Laboratory Press

    Google Scholar 

  15. Wallace PG, Hewish DR, Venning MM et al (1971) Multiple forms of mammalian deoxyribonucleic acid polymerase. An attempt to relate their interactions with nuclei and free deoxyribonucleic acid in vitro with their possible functions in vivo. Biochem J 125:47–54

    Article  Google Scholar 

  16. Green MR, Sambrook J (2019) Estimation of cell number by hemocytometry counting. Cold Spring Harb Protoc 2019:pdb.prot097980

    Article  Google Scholar 

  17. Garcia-Exposito L, Bournique E, Bergoglio V et al (2016) Proteomic profiling reveals a specific role for translesion DNA polymerase η in the alternative lengthening of telomeres. Cell Rep 17:1858–1871

    Article  Google Scholar 

Download references

Acknowledgments

We thank Anna E.C. Meijering, Christian F. Nielsen, Hannes Witt, Ian D. Hickson and Erwin J.G. Peterman for the development of the experimental workflow described here.

This work was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation program (MONOCHROME, grant agreement no. 883240 to G.J.L.W.).

Competing Financial Interests

G.J.L.W. is a co-owner of LUMICKS B.V. The other authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gijs J. L. Wuite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Clement, T.V.M., van der Smagt, C., Wuite, G.J.L. (2024). Probing Mitotic Chromosome Mechanics Using Optical Tweezers. In: Heller, I., Dulin, D., Peterman, E.J. (eds) Single Molecule Analysis . Methods in Molecular Biology, vol 2694. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3377-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3377-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3376-2

  • Online ISBN: 978-1-0716-3377-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation