DNA Origami-Based Single-Molecule Force Spectroscopy and Applications

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2694))

Abstract

Over the last years, single-molecule force spectroscopy provided insights into the intricate connection between mechanical stimuli and biochemical signaling. The underlying molecular mechanisms were uncovered and explored using techniques such as atomic force microscopy and force spectroscopy using optical or magnetic tweezers. These experimental approaches are limited by thermal noise resulting from a physical connection of the studied biological system to the macroscopic world. To overcome this limitation, we recently introduced the DNA origami force clamp (FC) which is a freely diffusing nanodevice that generates piconewton forces on a DNA sequence of interest. Binding of a protein to the DNA under tension can be detected employing fluorescence resonance energy transfer (FRET) as a sensitive readout.

This protocol introduces the reader to the working principles of the FC and provides instructions to design and generate a DNA origami FC customized for a protein of interest. Molecular cloning techniques are employed to modify, produce, and purify a custom DNA scaffold. A fluorescently labeled DNA suitable to detect protein binding via FRET is generated via enzymatic ligation of commercial DNA oligonucleotides. After thermal annealing of all components, the DNA origami FC is purified using agarose gel electrophoresis. The final section covers the interrogation of the FC using confocal single-molecule FRET measurements and subsequent data analysis to quantify the binding of a DNA-binding protein to its cognate recognition site under a range of forces. Using this approach, force-dependent DNA-protein interactions can be studied on the single-molecule level on thousands of molecules in a parallelized fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krieg M, Fläschner G, Alsteens D et al (2019) Atomic force microscopy-based mechanobiology. Nat Rev Phys 1:41–57. https://doi.org/10.1038/s42254-018-0001-7

    Article  Google Scholar 

  2. Bustamante CJ, Chemla YR, Liu S, Wang MD (2021) Optical tweezers in single-molecule biophysics. Nat Rev Methods Prim 1:25. https://doi.org/10.1038/s43586-021-00021-6

    Article  Google Scholar 

  3. Brockman JM, Su H, Blanchard AT et al (2020) Live-cell super-resolved PAINT imaging of piconewton cellular traction forces. Nat Methods 17:1018–1024. https://doi.org/10.1038/s41592-020-0929-2

    Article  Google Scholar 

  4. Fischer LS, Rangarajan S, Sadhanasatish T, Grashoff C (2021) Molecular force measurement with tension sensors. Annu Rev Biophys 50:595–616. https://doi.org/10.1146/annurev-biophys-101920-064756

    Article  Google Scholar 

  5. Cost A, Khalaji S, Grashoff C (2019) Genetically encoded FRET-based tension sensors. Curr Protoc Cell Biol 83. https://doi.org/10.1002/cpcb.85

  6. Goktas M, Blank KG (2017) Molecular force sensors: from fundamental concepts toward applications in cell biology. Adv Mater Interfaces 4:1600441. https://doi.org/10.1002/admi.201600441

    Article  Google Scholar 

  7. Blanchard AT, Salaita K (2019) Emerging uses of DNA mechanical devices. Science 365:1080–1081. https://doi.org/10.1126/science.aax3343

    Article  ADS  Google Scholar 

  8. Darcy M, Crocker K, Wang Y et al (2022) High-force application by a nanoscale DNA force spectrometer. ACS Nano 16:5682–5695. https://doi.org/10.1021/acsnano.1c10698

    Article  Google Scholar 

  9. Funke JJ, Ketterer P, Lieleg C et al (2016) Uncovering the forces between nucleosomes using DNA origami. Sci Adv 2. https://doi.org/10.1126/sciadv.1600974

  10. Nickels PC, Wünsch B, Holzmeister P et al (2016) Molecular force spectroscopy with a DNA origami–based nanoscopic force clamp. Science 354:305–307. https://doi.org/10.1126/science.aah5974

    Article  ADS  Google Scholar 

  11. Kramm K, Schröder T, Gouge J et al (2020) DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability. Nat Commun 11:2828. https://doi.org/10.1038/s41467-020-16702-x

    Article  ADS  Google Scholar 

  12. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302. https://doi.org/10.1038/nature04586

    Article  ADS  Google Scholar 

  13. Dey S, Fan C, Gothelf KV et al (2021) DNA origami. Nat Rev Methods Prim 1:13. https://doi.org/10.1038/s43586-020-00009-8

    Article  Google Scholar 

  14. Engelen W, Dietz H (2021) Advancing biophysics using DNA origami. Annu Rev Biophys 50:469–492. https://doi.org/10.1146/annurev-biophys-110520-125739

    Article  Google Scholar 

  15. Hong F, Zhang F, Liu Y, Yan H (2017) DNA origami: scaffolds for creating higher order structures. Chem Rev 117:12584–12640. https://doi.org/10.1021/acs.chemrev.6b00825

    Article  Google Scholar 

  16. Mills A, Aissaoui N, Maurel D et al (2022) A modular spring-loaded actuator for mechanical activation of membrane proteins. Nat Commun 13:3182. https://doi.org/10.1038/s41467-022-30745-2

    Article  ADS  Google Scholar 

  17. Hohng S, Zhou R, Nahas MK et al (2007) Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holiday junction. Science 318:279–283. https://doi.org/10.1126/science.1146113

    Article  ADS  Google Scholar 

  18. Kemmerich FE, Swoboda M, Kauert DJ et al (2016) Simultaneous single-molecule force and fluorescence sampling of DNA nanostructure conformations using magnetic tweezers. Nano Lett 16:381–386. https://doi.org/10.1021/acs.nanolett.5b03956

    Article  ADS  Google Scholar 

  19. Douglas SM, Marblestone AH, Teerapittayanon S et al (2009) Rapid prototy** of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37:5001–5006. https://doi.org/10.1093/NAR/GKP436

    Article  Google Scholar 

  20. Kostrewa D, Zeller ME, Armache K-J et al (2009) RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 462:323–330. https://doi.org/10.1038/nature08548

    Article  ADS  Google Scholar 

  21. Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799. https://doi.org/10.1126/science.271.5250.795

    Article  ADS  Google Scholar 

  22. Sambrook JRDW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  23. Schrimpf W, Barth A, Hendrix J, Lamb DC (2018) PAM: a framework for integrated analysis of imaging, single-molecule, and ensemble fluorescence data. Biophys J 114:1518–1528. https://doi.org/10.1016/j.bpj.2018.02.035

    Article  Google Scholar 

  24. Tomov TE, Tsukanov R, Masoud R et al (2012) Disentangling subpopulations in single-molecule FRET and ALEX experiments with photon distribution analysis. Biophys J 102:1163–1173. https://doi.org/10.1016/j.bpj.2011.11.4025

    Article  Google Scholar 

  25. Stahl E, Martin TG, Praetorius F, Dietz H (2014) Facile and scalable preparation of pure and dense DNA origami solutions. Angew Chemie Int Ed 53:12735–12740. https://doi.org/10.1002/anie.201405991

    Article  Google Scholar 

  26. Lin C, Perrault SD, Kwak M et al (2013) Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res 41:e40. https://doi.org/10.1093/NAR/GKS1070

    Article  Google Scholar 

  27. Wagenbauer KF, Engelhardt FAS, Stahl E et al (2017) How we make DNA origami. ChemBioChem 18:1873–1885. https://doi.org/10.1002/CBIC.201700377

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Grohmann .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Movie 1

Supplementary file 1_force_clamp_p7249 (JSON 350 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kramm, K., Schröder, T., Vera, A.M., Grabenhorst, L., Tinnefeld, P., Grohmann, D. (2024). DNA Origami-Based Single-Molecule Force Spectroscopy and Applications. In: Heller, I., Dulin, D., Peterman, E.J. (eds) Single Molecule Analysis . Methods in Molecular Biology, vol 2694. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3377-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3377-9_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3376-2

  • Online ISBN: 978-1-0716-3377-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation