Dielectrophoresis-Assisted Self-Digitization Chip for High-Efficiency Single-Cell Analysis

  • Protocol
  • First Online:
Single-Cell Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2689))

Abstract

Single-cell analysis of cell phenotypic information such as surface protein expression and nucleic acid content is essential for understanding heterogeneity within cell populations. Here the design and use of a dielectrophoresis-assisted self-digitization (SD) microfluidics chip is described; it captures single cells in isolated microchambers with high efficiency for single-cell analysis. The self-digitization chip spontaneously partitions aqueous solution into microchambers through a combination of fluidic forces, interfacial tension, and channel geometry. Single cells are guided to and trapped at the entrances of microchambers by dielectrophoresis (DEP) due to local electric field maxima created by an externally applied AC voltage. Excess cells are flushed away, and trapped cells are released into the chambers and prepared for in situ analysis by turning off the external voltage, by running reaction buffer through the chip, and by sealing the chambers with a flow of an immiscible oil phase through the surrounding channels. The use of this device in single-cell analysis is demonstrated by performing single-cell nucleic acid quantitation based on loop-mediated isothermal amplification (LAMP). This platform provides a powerful new tool for single-cell research pertaining to drug discovery. For example, the single-cell genoty** of cancer-related mutant gene observed from the digital chip could be useful biomarker for targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joensson HN, Svahn HA (2012) Droplet microfluidics-a tool for single-cell analysis. Angew Chem Int Ed 51:12176–12192

    Article  CAS  Google Scholar 

  2. Mazutis L, Gilbert J, Ung WL et al (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8:870–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Satija R, Shalek AK (2014) Heterogeneity in immune responses: from populations to single cells. Trends Immunol 35:219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khoo BL, Chaudhuri PK, Ramalingam N et al (2016) Single-cell profiling approaches to probing tumor heterogeneity. Int J Cancer 139:243–255

    Article  CAS  PubMed  Google Scholar 

  6. Kimmerling RJ, Szeto GL, Li JW et al (2016) A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages. Nat Commun 7. https://doi.org/10.1038/ncomms10220

  7. Prakadan SM, Shalek AK, Weitz DA (2017) Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices. Nat Rev Genet 18:345–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qin Y, Wu L, Schneider T et al (2018) Self-digitization dielectrophoretic (SD-DEP) chip for high-efficiency single-cell capture on-demand compartmentalization and downstream nucleic acid analysis. Angew Chem Int Ed 57:11378–11383

    Article  CAS  Google Scholar 

  9. Cheng Y-H, Chen Y-C, Lin E et al (2014) Hydro-seq enables contamination-free high-throughput single-cell RNA-sequencing for circulating tumor cells. Nat Commun 10. https://doi.org/10.1038/s41467-019-10122-2

  10. Zhu Q, Qiu L, Yu B et al (2014) Digital PCR on an integrated self-priming compartmentalization chip. Lab Chip 14:1176–1185

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Q, Xu Y, Qiu L et al (2017) A scalable self-priming fractal branching microchannel net chip for digital PCR. Lab Chip 17:1655–1665

    Article  CAS  PubMed  Google Scholar 

  12. Ma YD, Chang WH, Luo K et al (2018) Digital quantification of DNA via isothermal amplification on a self-driven microfluidic chip featuring hydrophilic film-coated polydimethylsiloxane. Biosens Bioelectron 99:547–554

    Article  CAS  PubMed  Google Scholar 

  13. Thompson AM, Gansen A, Paguirigan AL et al (2014) Self-digitization microfluidic chip for absolute quantification of mRNA in single cells. Anal Chem 86:12308–12314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yin J, Zou Z, Yin F et al (2020) A self-priming digital polymerase chain reaction chip for multiplex genetic analysis. ACS Nano 14:10385–10393

    Article  CAS  PubMed  Google Scholar 

  15. Cohen DE, Schneider T, Wang M et al (2010) Self-digitization of sample volumes. Anal Chem 82:5707–5717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gansen A, Herrick AM, Dimov IK et al (2012) Digital LAMP in a sample self-digitization (SD) chip. Lab Chip 12:2247–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Catarino S, Lima R, Minas G (2017) 12-smart devices: lab-on-a-chip. In: Bioinspired materials for medical applications. Elsevier, pp 331–369

    Chapter  Google Scholar 

  18. Gagnon ZR (2011) Cellular dielectrophoresis: applications to the characterization manipulation separation and patterning of cells. Electrophoresis 32:2466–2487

    Article  CAS  PubMed  Google Scholar 

  19. Li M, Anand RK (2017) High-throughput selective capture of single circulating tumor cells by dielectrophoresis at a wireless electrode array. J Am Chem Soc 139:8950–8959

    Article  CAS  PubMed  Google Scholar 

  20. Li M, Anand RK (2018) Cellular dielectrophoresis coupled with single-cell analysis. Anal Bioanal Chem 410:2499–2515

    Article  CAS  PubMed  Google Scholar 

  21. Yan L, Zhou J, Zheng Y et al (2014) Isothermal amplified detection of DNA and RNA. Mol BioSyst 10:970–1003

    Article  CAS  PubMed  Google Scholar 

  22. Wong YP, Othman S, Lau YL et al (2018) Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms. J Appl Microbiol 124:626–643

    Article  CAS  PubMed  Google Scholar 

  23. Panno S, Matic S, Tiberini A et al (2020) Loop mediated isothermal amplification: principles and applications in plant virology. Plan Theory 9. https://doi.org/10.3390/plants9040461

  24. Notomi T, Mori Y, Tomita N et al (2015) Loop-mediated isothermal amplification (LAMP): principle features and future prospects. J Microbiol 53:1–5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant (R21EB018831 and UG3CA211139), NNSFC grant (31901056), and JSAP grant (06200053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuling Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Qin, Y., Wu, L., Chiu, D.T. (2023). Dielectrophoresis-Assisted Self-Digitization Chip for High-Efficiency Single-Cell Analysis. In: Li, P.C., Wu, A.R. (eds) Single-Cell Assays. Methods in Molecular Biology, vol 2689. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3323-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3323-6_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3322-9

  • Online ISBN: 978-1-0716-3323-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation