The PANDORA Software for Anchor-Restrained Peptide:MHC Modeling

  • Protocol
  • First Online:
Computational Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2673))

Abstract

Major histocompatibility complexes (MHC) play a key role in the immune surveillance system in all jawed vertebrates. MHC class I molecules randomly sample cytosolic peptides from inside the cell, while MHC class II sample exogenous peptides. Both types of peptide:MHC complex are then presented on the cell surface for recognition by αβ T cells (CD8+ and CD4+, respectively). The three-dimensional structure of such complexes can give crucial insights in the presentation and recognition mechanisms. For this reason, softwares like PANDORA have been developed to rapidly and accurately generate peptide:MHC (pMHC) 3D structures. In this chapter, we describe the protocol of PANDORA. PANDORA exploits the structural knowledge on anchor pockets that MHC molecules use to dock peptides. PANDORA provides anchor positions as restraints to guide the modeling process. This allows PANDORA to generate twenty 3D models in just about 5 min. PANDORA is highly customizable, easy to install, supports parallel processing, and is suitable to provide large datasets for deep learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. He Q, Jiang X, Zhou X, Weng J (2019) Targeting cancers through TCR-peptide/MHC interactions. J Hematol Oncol 12:139. https://doi.org/10.1186/s13045-019-0812-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Djaoud Z, Parham P (2020) HLAs, TCRs, and KIRs, a triumvirate of human cell-mediated immunity. Annu Rev Biochem 89:717–739. https://doi.org/10.1146/annurev-biochem-011520-102754

    Article  CAS  PubMed  Google Scholar 

  3. Turner SJ, Doherty PC, McCluskey J, Rossjohn J (2006) Structural determinants of T-cell receptor bias in immunity. Nat Rev Immunol 6:883–894. https://doi.org/10.1038/nri1977

    Article  CAS  PubMed  Google Scholar 

  4. Wieczorek M, Abualrous ET, Sticht J et al (2017) Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front Immunol 8:292

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kyeong H-H, Choi Y, Kim H-S (2018) GradDock: rapid simulation and tailored ranking functions for peptide-MHC Class I docking. Bioinformatics 34:469–476. https://doi.org/10.1093/bioinformatics/btx589

    Article  CAS  PubMed  Google Scholar 

  6. Abella J, Antunes D, Clementi C, Kavraki L (2019) APE-gen: a fast method for generating ensembles of bound peptide-MHC conformations. Molecules 24:881. https://doi.org/10.3390/molecules24050881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Menegatti Rigo M, Amaral Antunes D, Vaz de Freitas M et al (2015) DockTope: a web-based tool for automated pMHC-I modelling. Sci Rep 5:18413. https://doi.org/10.1038/srep18413

    Article  CAS  PubMed Central  Google Scholar 

  8. Fagerberg T, Cerottini J-C, Michielin O (2006) Structural prediction of peptides bound to MHC class I. J Mol Biol 356:521–546. https://doi.org/10.1016/j.jmb.2005.11.059

    Article  CAS  PubMed  Google Scholar 

  9. Marzella DF, Parizi FM, van Tilborg D et al (2022) PANDORA: a fast, anchor-restrained modelling protocol for peptide: MHC complexes. Front Immunol 13:878762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Webb B, Sali A (2017) Protein structure modeling with MODELLER. In: Kaufmann M, Klinger C, Savelsbergh A (eds) Functional genomics: methods and protocols. Springer, New York, pp 39–54

    Chapter  Google Scholar 

  11. Soteras Gutiérrez I, Lin F-Y, Vanommeslaeghe K et al (2016) Parametrization of halogen bonds in the CHARMM general force field: improved treatment of ligand–protein interactions. Bioorg Med Chem 24:4812–4825. https://doi.org/10.1016/j.bmc.2016.06.034

    Article  PubMed  PubMed Central  Google Scholar 

  12. Berman HM (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muñoz V, Serrano L (1997) Development of the multiple sequence approximation within the AGADIR model of α-helix formation: comparison with Zimm-Bragg and Lifson-Roig formalisms. Biopolymers 41:495–509. https://doi.org/10.1002/(SICI)1097-0282(19970415)41:5<495::AID-BIP2>3.0.CO;2-H

    Article  PubMed  Google Scholar 

  14. Shen Y, Maupetit J, Derreumaux P, Tufféry P (2014) Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J Chem Theory Comput 10:4745–4758. https://doi.org/10.1021/ct500592m

    Article  CAS  PubMed  Google Scholar 

  15. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J Chem Phys 153(13). https://aip.scitation.org/doi/10.1063/5.0018516. Accessed 31 Oct 2022

  17. Reynisson B, Alvarez B, Paul S et al (2020) NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res 48:W449–W454. https://doi.org/10.1093/nar/gkaa379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project is supported by the Hypatia Fellowship from Radboudumc (Rv819.52706) and Open eScience grant from the Netherlands eScience Center (NLESC.OEC.2021.008). FP acknowledges a visiting scholarship from the Department of Scholarships and Students’ Affairs Abroad, Ministry of Science, Research and Technology, Iran.

The authors sincerely thank Gayatri Ramakrishnan, Max Luppes, Coos Baakman, Heleen Severin, and Nicolas Renaud for suggestions and proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li C. Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marzella, D.F., Crocioni, G., Parizi, F.M., Xue, L.C. (2023). The PANDORA Software for Anchor-Restrained Peptide:MHC Modeling. In: Reche, P.A. (eds) Computational Vaccine Design. Methods in Molecular Biology, vol 2673. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3239-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3239-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3238-3

  • Online ISBN: 978-1-0716-3239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation