Introduction of Genome Editing Reagents and Genoty** of Derived Edited Alleles in Soybean (Glycine max (L.) Merr.)

  • Protocol
  • First Online:
Plant Genome Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2653))

  • 1017 Accesses

Abstract

Cas9-based genome editing is a powerful genetic tool for loci specifically targeted for genome modification. This chapter describes up-to-date protocols using Cas9-based genome editing technology, including vector construction with GoldenBraid assembly, Agrobacterium-mediated soybean transformation, and identification of editing in the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Songstad D et al (2017) Genome editing of plants. Crit Rev Plant Sci 36(1):1–23

    Article  Google Scholar 

  2. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350

    Article  CAS  PubMed  Google Scholar 

  4. **ek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feng Z et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bayer PE et al (2022) Sequencing the USDA core soybean collection reveals gene loss during domestication and breeding. Plant Genome 15(1):e20109

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka N et al (2020) Whole-genome sequencing of the NARO World Rice Core Collection (WRC) as the basis for diversity and association studies. Plant Cell Physiol 61(5):922–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sarrion-Perdigones A et al (2013) GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol 162(3):1618–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thompson CJ et al (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6(9):2519–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:152–158

    Article  Google Scholar 

  11. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  12. Michno J-M et al (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6(4):243–252

    Article  PubMed  PubMed Central  Google Scholar 

  13. De La Torre CM, Finer JJ (2015) The intron and 5′ distal region of the soybean Gmubi promoter contribute to very high levels of gene expression in transiently and stably transformed tissues. Plant Cell Rep 34(1):111–120

    Article  PubMed  Google Scholar 

  14. Zhang Z et al (1999) The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tissue Organ Cult 56(1):37–46

    Article  CAS  Google Scholar 

  15. Fehr WR, Caviness CE (1979) Stages of soybean development, vol 80. Cooperation Extension Service: Iowa State University, pp 1–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Quach, T., Nguyen, H., Meyer, O., Sato, S.J., Clemente, T.E., Guo, M. (2023). Introduction of Genome Editing Reagents and Genoty** of Derived Edited Alleles in Soybean (Glycine max (L.) Merr.). In: Yang, B., Harwood, W., Que, Q. (eds) Plant Genome Engineering. Methods in Molecular Biology, vol 2653. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3131-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3131-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3130-0

  • Online ISBN: 978-1-0716-3131-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation