Assessment of Mitochondrial Dysfunctions After Sirtuin Inhibition

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2589))

Abstract

Posttranslational modifications are important for protein functions and cellular signaling pathways. The acetylation of lysine residues is catalyzed by histone acetyltransferases (HATs) and removed by histone deacetylases (HDACs), with the latter being grouped into four phylogenetic classes. The class III of the HDAC family, the sirtuins (SIRTs), contributes to gene expression, genomic stability, cell metabolism, and tumorigenesis. Thus, several specific SIRT inhibitors (SIRTi) have been developed to target cancer cell proliferation. Here we provide an overview of methods to study SIRT-dependent cell metabolism and mitochondrial functionality. The chapter describes metabolic flux analysis using Seahorse analyzers, methods for normalization of Seahorse data, flow cytometry and fluorescence microscopy to determine the mitochondrial membrane potential, mitochondrial content per cell and mitochondrial network structures, and Western blot analysis to measure mitochondrial proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verdin E, Ott M (2015) 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 16:258–264

    Article  CAS  Google Scholar 

  2. Chang HC, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25:138–145

    Article  CAS  Google Scholar 

  3. Newbold A, Falkenberg KJ, Prince HM et al (2016) How do tumor cells respond to HDAC inhibition? FEBS J 283:4032–4046

    Article  CAS  Google Scholar 

  4. Spiegel S, Milstien S, Grant S (2012) Endogenous modulators and pharmacological inhibitors of histone deacetylases in cancer therapy. Oncogene 31:537–551

    Article  CAS  Google Scholar 

  5. Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13:673–691

    Article  CAS  Google Scholar 

  6. Chalkiadaki A, Guarente L (2015) The multifaceted functions of sirtuins in cancer. Nat Rev Cancer 15:608–624

    Article  CAS  Google Scholar 

  7. George J, Ahmad N (2016) Mitochondrial sirtuins in cancer: emerging roles and therapeutic potential. Cancer Res 76:2500–2506

    Article  CAS  Google Scholar 

  8. Sack MN, Finkel T (2012) Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harb Perspect Biol 4

    Google Scholar 

  9. Van De Ven RAH, Santos D, Haigis MC (2017) Mitochondrial sirtuins and molecular mechanisms of aging. Trends Mol Med 23:320–331

    Article  Google Scholar 

  10. Leonhardt J, Grosse S, Marx C et al (2018) Candida albicans beta-glucan differentiates human monocytes into a specific subset of macrophages. Front Immunol 9

    Google Scholar 

  11. Lajqi T, Marx C, Hudalla H et al (2021) The role of the pathogen dose and PI3Kgamma in immunometabolic reprogramming of microglia for innate immune memory. Int J Mol Sci 22

    Google Scholar 

  12. Little AC, Kovalenko I, Goo LE et al (2020) High-content fluorescence imaging with the metabolic flux assay reveals insights into mitochondrial properties and functions. Commun Biol 3:271

    Article  CAS  Google Scholar 

  13. Vitiello GA, Medina BD, Zeng S et al (2018) Mitochondrial inhibition augments the efficacy of imatinib by resetting the metabolic phenotype of gastrointestinal stromal tumor. Clin Cancer Res 24:972–984

    Article  CAS  Google Scholar 

  14. Lue HW, Podolak J, Kolahi K et al (2017) Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade. Genes Dev 31:2067–2084

    Article  CAS  Google Scholar 

  15. Meyer FB, Marx C, Spangel SB et al (2021) Butyrate and metformin affect energy metabolism independently of the metabolic phenotype in the tumor therapy model. Biomolecules:11

    Google Scholar 

  16. Russo E, Lee JY, Nguyen H et al (2020) Energy metabolism analysis of three different mesenchymal stem cell populations of umbilical cord under normal and pathologic conditions. Stem Cell Rev Rep 16:585–595

    Article  CAS  Google Scholar 

  17. Smallwood HS, Duan S, Morfouace M et al (2017) Targeting metabolic reprogramming by influenza infection for therapeutic intervention. Cell Rep 19:1640–1653

    Article  CAS  Google Scholar 

  18. Duraj T, Garcia-Romero N, Carrion-Navarro J et al (2021) Beyond the warburg effect: oxidative and glycolytic phenotypes coexist within the metabolic heterogeneity of glioblastoma. Cells 10

    Google Scholar 

  19. Lund J, Ouwens DM, Wettergreen M et al (2019) Increased glycolysis and higher lactate production in hyperglycemic myotubes. Cells 8

    Google Scholar 

  20. Marx C, Marx-Blumel L, Lindig N et al (2018) The sirtuin 1/2 inhibitor tenovin-1 induces a nonlinear apoptosis-inducing factor-dependent cell death in a p53 null Ewing‘s sarcoma cell line. Invest New Drugs 36:396–406

    Article  CAS  Google Scholar 

  21. Feoktistova M, Geserick P, Leverkus M (2016) Crystal violet assay for determining viability of cultured cells. Cold Spring Harb Protoc 2016:pdb prot087379

    Article  Google Scholar 

  22. Kauppila TES, Kauppila JHK, Larsson NG (2017) mammalian mitochondria and aging: an update. Cell Metab 25:57–71

    Article  CAS  Google Scholar 

  23. Van Der Bliek AM, Sedensky MM, Morgan PG (2017) Cell biology of the mitochondrion. Genetics 207:843–871

    Article  Google Scholar 

  24. Mishra P, Chan DC (2016) Metabolic regulation of mitochondrial dynamics. J Cell Biol 212:379–387

    Article  CAS  Google Scholar 

  25. Anderson AJ, Jackson TD, Stroud DA et al (2019) Mitochondria-hubs for regulating cellular biochemistry: emerging concepts and networks. Open Biol 9:190126

    Article  CAS  Google Scholar 

  26. Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27:105–117

    Article  CAS  Google Scholar 

  27. Marx-Blumel L, Marx C, Kuhne M et al (2017) Assessment of HDACi-induced cytotoxicity. Methods Mol Biol 1510:23–45

    Article  CAS  Google Scholar 

  28. Marx C, Schaarschmidt MU, Kirkpatrick J et al (2021) Cooperative treatment effectiveness of ATR and HSP90 inhibition in Ewing’s sarcoma cells. Cell Biosci 11:57

    Article  CAS  Google Scholar 

  29. Mckinnon KM (2018) Flow cytometry: an overview. Curr Protoc Immunol 120:5 1 1–5 1 11

    PubMed  PubMed Central  Google Scholar 

  30. Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477

    Article  CAS  Google Scholar 

  31. Signes A, Fernandez-Vizarra E (2018) Assembly of mammalian oxidative phosphorylation complexes I–V and supercomplexes. Essays Biochem 62:255–270

    Article  Google Scholar 

  32. Chaban Y, Boekema EJ, Dudkina NV (2014) Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochim Biophys Acta 1837:418–426

    Article  CAS  Google Scholar 

  33. Mathur A, Hong Y, Kemp BK et al (2000) Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res 46:126–138

    Article  CAS  Google Scholar 

  34. Sorvina A, Bader CA, Darby JRT et al (2018) Mitochondrial imaging in live or fixed tissues using a luminescent iridium complex. Sci Rep 8:8191

    Article  Google Scholar 

  35. Dagda RK, Cherra SJ 3rd, Kulich SM et al (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855

    Article  CAS  Google Scholar 

  36. Clutton G, Mollan K, Hudgens M et al (2019) A reproducible, objective method using MitoTracker(R) fluorescent dyes to assess mitochondrial mass in T cells by flow cytometry. Cytometry A 95:450–456

    Article  CAS  Google Scholar 

  37. Husain RA, Grimmel M, Wagner M et al (2020) Bi-allelic HPDL variants cause a neurodegenerative disease ranging from neonatal encephalopathy to adolescent-onset spastic paraplegia. Am J Hum Genet 107:364–373

    Article  CAS  Google Scholar 

  38. Giachin G, Bouverot R, Acajjaoui S et al (2016) Dynamics of human mitochondrial complex I assembly: implications for neurodegenerative diseases. Front Mol Biosci 3:43

    Article  Google Scholar 

  39. Heinze I, Bens M, Calzia E et al (2018) Species comparison of liver proteomes reveals links to naked mole-rat longevity and human aging. BMC Biol 16:82

    Article  Google Scholar 

  40. Cerutti R, Pirinen E, Lamperti C et al (2014) NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab 19:1042–1049

    Article  CAS  Google Scholar 

  41. Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123

    Article  CAS  Google Scholar 

  42. Lee IH (2019) Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp Mol Med 51:1–11

    Article  Google Scholar 

  43. Wang L, Pavlou S, Du X et al (2019) Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener 14:2

    Article  Google Scholar 

  44. Marx C, Sonnemann J, Beyer M et al (2021) Mechanistic insights into p53-regulated cytotoxicity of combined entinostat and irinotecan against colorectal cancer cells. Mol Oncol 15:3404–3429

    Article  Google Scholar 

  45. Valente AJ, Maddalena LA, Robb EL et al (2017) A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. Acta Histochem 119:315–326

    Article  CAS  Google Scholar 

  46. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We like to thank Prof. Dr. R. Heller (CMB, University Hospital Jena) for providing HUVEC cells and Dr. Daniel Gebhard (Product Specialist Cell Analysis, Agilent Technologies) for commenting the manuscript. We like to thank the FLI core facilities imaging, flow cytometry, and functional genomics, namely, Dr. Torsten Kroll, who set up the algorithms for automated high-content microscopy analysis, and the mouse facility for their excellent services. The Graduate Academy (GA) of the Friedrich-Schiller-University (FSU) Jena funded L.M-B.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marx, C., Marx-Blümel, L., Sonnemann, J., Wang, ZQ. (2023). Assessment of Mitochondrial Dysfunctions After Sirtuin Inhibition. In: Krämer, O.H. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 2589. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2788-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2788-4_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2787-7

  • Online ISBN: 978-1-0716-2788-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation