Assessing Neural Circuit Interactions and Dynamics with Phase-Amplitude Coupling

  • Protocol
  • First Online:
Electrophysiological Recording Techniques

Part of the book series: Neuromethods ((NM,volume 192))

  • 688 Accesses

Abstract

Complex biological systems exhibit periodicity at multiple frequencies, and these rhythms are rarely independent, exhibiting many forms of coupling including phase synchronization and amplitude comodulation. Brain rhythms – oscillations in electroencephalogram (EEG) and local field potential (LFP) recordings that are signatures of the coordinated activity of neuronal populations – are believed to play a key role in coordinating the activity of neuronal populations across multiple spatial and temporal scales and are known to be associated with a wide range of cognitive and perceptual processes. Phase-amplitude coupling (PAC) – the coordination of phase and amplitude changes in brain rhythms of different frequencies – can be used to illuminate coordination in neurophysiological activity across timescales and brain regions. Here, we describe signal-processing techniques that have been used to both explore and quantify PAC in EEG and LFP time series. Specifically, we focus on the use of surrogate data techniques during exploratory analyses and on the use of PAC to determine directional influences between neural circuits. Our goal is to provide the reader with guidelines on how to apply and interpret both qualitative and quantitative PAC measures and to highlight advantages and limitations of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Canolty RT, Ganguly K, Kennerley SW, Cadieu CF, Koepsell K, Wallis JD, Carmena JM (2010) Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proc Natl Acad Sci U S A 107:17356–17361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Canolty RT, Knight RT (2010) The functional role of cross-frequency coupling. Trends Cogn Sci 14:506–515

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jensen O, Colgin LL (2007) Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci 11:267–269

    Article  PubMed  Google Scholar 

  5. Cohen MX (2008) Assessing transient cross-frequency coupling in EEG data. J Neurosci Methods 168:494–499

    Article  PubMed  Google Scholar 

  6. Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE (2005) An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J Neurophysiol 94:1904–1911

    Article  PubMed  Google Scholar 

  7. He BJ, Zempel JM, Snyder AZ, Raichle ME (2010) The temporal structures and functional significance of scale-free brain activity. Neuron 66:353–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G (1995) Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15:47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jensen O, Idiart MA, Lisman JE (1996) Physiologically realistic formation of autoassociative memory in networks with theta/gamma oscillations: role of fast NMDA channels. Learn Mem 3:243–256

    Article  CAS  PubMed  Google Scholar 

  10. Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, Fell J (2010) Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci U S A 107:3228–3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heusser AC, Poeppel D, Ezzyat Y, Davachi L (2016) Episodic sequence memory is supported by a theta-gamma phase code. Nat Neurosci 19:1374–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Siegel M, Warden MR, Miller EK (2009) Phase-dependent neuronal coding of objects in short-term memory. Proc Natl Acad Sci U S A 106:21341–21346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Watrous AJ, Deuker L, Fell J, Axmacher N (2015) Phase-amplitude coupling supports phase coding in human ECoG. eLife 4:e07886

    Article  PubMed Central  Google Scholar 

  14. Lee S, Sen K, Kopell N (2009) Cortical gamma rhythms modulate NMDAR-mediated spike timing dependent plasticity in a biophysical model. PLoS Comput Biol 5:e1000602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Busch NA, VanRullen R (2010) Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proc Natl Acad Sci U S A 107:16048–16053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Drewes J, VanRullen R (2011) This is the rhythm of your eyes: the phase of ongoing electroencephalogram oscillations modulates saccadic reaction time. J Neurosci 31:4698–4708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. VanRullen R, Macdonald JS (2012) Perceptual echoes at 10 Hz in the human brain. Curr Biol 22:995–999

    Article  CAS  PubMed  Google Scholar 

  18. Jensen O, Bonnefond M, VanRullen R (2012) An oscillatory mechanism for prioritizing salient unattended stimuli. Trends Cogn Sci 16:200–206

    Article  PubMed  Google Scholar 

  19. Jensen O, Gips B, Bergmann TO, Bonnefond M (2014) Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci 37:357–369

    Article  CAS  PubMed  Google Scholar 

  20. Hyafil A, Fontolan L, Kabdebon C, Gutkin B, Giraud AL (2015) Speech encoding by coupled cortical theta and gamma oscillations. eLife 4:e06213

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320:110–113

    Article  CAS  PubMed  Google Scholar 

  22. Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32:9–18

    Article  CAS  PubMed  Google Scholar 

  23. Morillon B, Schroeder CE (2015) Neuronal oscillations as a mechanistic substrate of auditory temporal prediction. Ann N Y Acad Sci 1337:26–31

    Article  PubMed  PubMed Central  Google Scholar 

  24. Doelling KB, Arnal LH, Ghitza O, Poeppel D (2014) Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing. NeuroImage 85(Pt 2):761–768

    Article  CAS  PubMed  Google Scholar 

  25. Ghitza UE (2017) Commentary: addictions Neuroclinical assessment: a neuroscience-based framework for addictive disorders. Front Psych 8:2

    Google Scholar 

  26. Giraud AL, Poeppel D (2012) Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci 15:511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fontolan L, Morillon B, Liegeois-Chauvel C, Giraud AL (2014) The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex. Nat Commun 5:4694

    Article  CAS  PubMed  Google Scholar 

  28. Morillon B, Liegeois-Chauvel C, Arnal LH, Benar CG, Giraud AL (2012) Asymmetric function of theta and gamma activity in syllable processing: an intra-cortical study. Front Psychol 3:248

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pefkou M, Arnal LH, Fontolan L, Giraud AL (2017) Theta-band and beta-band neural activity reflects independent syllable tracking and comprehension of time-compressed speech. J Neurosci 37:7930–7938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mai G, Minett JW, Wang WS (2016) Delta, theta, beta, and gamma brain oscillations index levels of auditory sentence processing. NeuroImage 133:516–528

    Article  PubMed  Google Scholar 

  31. Schroeder CE, Lakatos P, Kajikawa Y, Partan S, Puce A (2008) Neuronal oscillations and visual amplification of speech. Trends Cogn Sci 12:106–113

    Article  PubMed  PubMed Central  Google Scholar 

  32. Helfrich RF, Mander BA, Jagust WJ, Knight RT, Walker MP (2018) Old brains come uncoupled in sleep: slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron 97:221–230.e4

    Article  CAS  PubMed  Google Scholar 

  33. Colgin LL (2011) Oscillations and hippocampal-prefrontal synchrony. Curr Opin Neurobiol 21:467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Daume J, Gruber T, Engel AK, Friese U (2017) Phase-amplitude coupling and long-range phase synchronization reveal frontotemporal interactions during visual working memory. J Neurosci 37:313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. von Nicolai C, Engler G, Sharott A, Engel AK, Moll CK, Siegel M (2014) Corticostriatal coordination through coherent phase-amplitude coupling. J Neurosci 34:5938–5948

    Article  CAS  Google Scholar 

  36. Scheffzuk C, Kukushka VI, Vyssotski AL, Draguhn A, Tort AB, Brankack J (2011) Selective coupling between theta phase and neocortical fast gamma oscillations during REM-sleep in mice. PLoS One 6:e28489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Cordon I, Nicolas MJ, Arrieta S, Lopetegui E, Lopez-Azcarate J, Alegre M, Artieda J, Valencia M (2015) Coupling in the cortico-basal ganglia circuit is aberrant in the ketamine model of schizophrenia. Eur Neuropsychopharmacol 25:1375–1387

    Article  CAS  PubMed  Google Scholar 

  38. Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW (2011) Ketamine disrupts theta modulation of gamma in a computer model of hippocampus. J Neurosci 31:11733–11743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rivolta D, Heidegger T, Scheller B, Sauer A, Schaum M, Birkner K, Singer W, Wibral M, Uhlhaas PJ (2015) Ketamine dysregulates the amplitude and connectivity of high-frequency oscillations in cortical-subcortical networks in humans: evidence from resting-state magnetoencephalography-recordings. Schizophr Bull 41:1105–1114

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shreve LA, Velisar A, Malekmohammadi M, Koop MM, Trager M, Quinn EJ, Hill BC, Blumenfeld Z, Kilbane C, Mantovani A, Henderson JM, Bronte-Stewart H (2017) Subthalamic oscillations and phase amplitude coupling are greater in the more affected hemisphere in Parkinson’s disease. Clin Neurophysiol 128:128–137

    Article  PubMed  Google Scholar 

  41. Nandi B, Swiatek P, Kocsis B, Ding M (2019) Inferring the direction of rhythmic neural transmission via inter-regional phase-amplitude coupling (ir-PAC). Sci Rep 9:6933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Pittman-Polletta B, Hu K, Kocsis B (2018) Subunit-specific NMDAR antagonism dissociates schizophrenia subtype-relevant oscillopathies associated with frontal hypofunction and hippocampal hyperfunction. Sci Rep 8:11588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Richter CG, Babo-Rebelo M, Schwartz D, Tallon-Baudry C (2017) Phase-amplitude coupling at the organism level: the amplitude of spontaneous alpha rhythm fluctuations varies with the phase of the infra-slow gastric basal rhythm. NeuroImage 146:951–958

    Article  PubMed  Google Scholar 

  44. Tort AB, Kramer MA, Thorn C, Gibson DJ, Kubota Y, Graybiel AM, Kopell NJ (2008) Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci U S A 105:20517–20522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cohen MX, Elger CE, Fell J (2009) Oscillatory activity and phase-amplitude coupling in the human medial frontal cortex during decision making. J Cogn Neurosci 21:390–402

    Article  PubMed  Google Scholar 

  46. Cohen MX, Axmacher N, Lenartz D, Elger CE, Sturm V, Schlaepfer TE (2009) Good vibrations: cross-frequency coupling in the human nucleus accumbens during reward processing. J Cogn Neurosci 21:875–889

    Article  PubMed  Google Scholar 

  47. Pittman-Polletta B, Hsieh WH, Kaur S, Lo MT, Hu K (2014) Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions. J Neurosci Methods 226:15–32

    Article  PubMed  PubMed Central  Google Scholar 

  48. Canolty RT, Cadieu CF, Koepsell K, Knight RT, Carmena JM (2012) Multivariate phase-amplitude cross-frequency coupling in neurophysiological signals. IEEE Trans Biomed Eng 59:8–11

    Article  PubMed  Google Scholar 

  49. Cohen MX (2017) Multivariate cross-frequency coupling via generalized eigendecomposition. eLife 6:e21792

    Article  PubMed  PubMed Central  Google Scholar 

  50. Keller CJ, Cash SS, Narayanan S, Wang C, Kuzniecky R, Carlson C, Devinsky O, Thesen T, Doyle W, Sassaroli A, Boas DA, Ulbert I, Halgren E (2009) Intracranial microprobe for evaluating neuro-hemodynamic coupling in unanesthetized human neocortex. J Neurosci Methods 179:208–218

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kramer MA, Eden UT (2013) Assessment of cross-frequency coupling with confidence using generalized linear models. J Neurosci Methods 220:64–74

    Article  CAS  PubMed  Google Scholar 

  52. Ozkurt TE, Schnitzler A (2011) A critical note on the definition of phase-amplitude cross-frequency coupling. J Neurosci Methods 201:438–443

    Article  PubMed  Google Scholar 

  53. Tort AB, Komorowski R, Eichenbaum H, Kopell N (2010) Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J Neurophysiol 104:1195–1210

    Article  PubMed  PubMed Central  Google Scholar 

  54. van Wijk BC, Jha A, Penny W, Litvak V (2015) Parametric estimation of cross-frequency coupling. J Neurosci Methods 243:94–102

    Article  PubMed  PubMed Central  Google Scholar 

  55. Blanca MJ, Alarcon R, Arnau J, Bono R, Bendayan R (2017) Non-normal data: is ANOVA still a valid option? Psicothema 29:552–557

    PubMed  Google Scholar 

  56. Schmider E, Ziegler M, Danay E, Beyer L, Buhner M (2010) Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodol Eur J Res Methods Behav Soc Sci 6:147–151

    Google Scholar 

  57. Gloveli T, Dugladze T, Rotstein HG, Traub RD, Monyer H, Heinemann U, Whittington MA, Kopell NJ (2005) Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. Proc Natl Acad Sci U S A 102:13295–13300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hyafil A, Giraud AL, Fontolan L, Gutkin B (2015) Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci 38:725–740

    Article  CAS  PubMed  Google Scholar 

  59. Onslow AC, Jones MW, Bogacz R (2014) A canonical circuit for generating phase-amplitude coupling. PLoS One 9:e102591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Sotero RC (2015) Modeling the generation of phase-amplitude coupling in cortical circuits: from detailed networks to neural mass models. Biomed Res Int 2015:915606

    Article  PubMed  PubMed Central  Google Scholar 

  61. Carracedo LM, Kjeldsen H, Cunnington L, Jenkins A, Schofield I, Cunningham MO, Davies CH, Traub RD, Whittington MA (2013) A neocortical delta rhythm facilitates reciprocal interlaminar interactions via nested theta rhythms. J Neurosci 33:10750–10761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tort AB, Rotstein HG, Dugladze T, Gloveli T, Kopell NJ (2007) On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proc Natl Acad Sci U S A 104:13490–13495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haufler D, Pare D (2014) High-frequency oscillations are prominent in the extended amygdala. J Neurophysiol 112:110–119

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hunt MJ, Matulewicz P, Gottesmann C, Kasicki S (2009) State-dependent changes in high-frequency oscillations recorded in the rat nucleus accumbens. Neuroscience 164:380–386

    Article  CAS  PubMed  Google Scholar 

  65. Hunt MJ, Raynaud B, Garcia R (2006) Ketamine dose-dependently induces high-frequency oscillations in the nucleus accumbens in freely moving rats. Biol Psychiatry 60:1206–1214

    Article  CAS  PubMed  Google Scholar 

  66. Olszewski M, Dolowa W, Matulewicz P, Kasicki S, Hunt MJ (2013) NMDA receptor antagonist-enhanced high frequency oscillations: are they generated broadly or regionally specific? Eur Neuropsychopharmacol 23:1795–1805

    Article  CAS  PubMed  Google Scholar 

  67. Fujisawa S, Buzsaki G (2011) A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 72:153–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roy A, Svensson FP, Mazeh A, Kocsis B (2017) Prefrontal-hippocampal coupling by theta rhythm and by 2-5 Hz oscillation in the delta band: the role of the nucleus reuniens of the thalamus. Brain Struct Funct 222:2819–2830

    Article  PubMed  PubMed Central  Google Scholar 

  69. Buzsaki G, Chen LS, Gage FH (1990) Spatial organization of physiological activity in the hippocampal region: relevance to memory formation. Prog Brain Res 83:257–268

    Article  CAS  PubMed  Google Scholar 

  70. Kocsis B, Bragin A, Buzsaki G (1999) Interdependence of multiple theta generators in the hippocampus: a partial coherence analysis. J Neurosci 19:6200–6212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vertes RP, Kocsis B (1997) Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81:893–926

    CAS  PubMed  Google Scholar 

  72. Bland BH (1986) The physiology and pharmacology of hippocampal formation theta rhythms. Prog Neurobiol 26:1–54

    Article  CAS  PubMed  Google Scholar 

  73. Buzsaki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287:139–171

    Article  CAS  PubMed  Google Scholar 

  74. Olszewski M, Piasecka J, Goda SA, Kasicki S, Hunt MJ (2013) Antipsychotic compounds differentially modulate high-frequency oscillations in the rat nucleus accumbens: a comparison of first- and second-generation drugs. Int J Neuropsychopharmacol 16:1009–1020

    Article  CAS  PubMed  Google Scholar 

  75. Popescu AT, Popa D, Pare D (2009) Coherent gamma oscillations couple the amygdala and striatum during learning. Nat Neurosci 12:801–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Belujon P, Grace AA (2008) Critical role of the prefrontal cortex in the regulation of hippocampus-accumbens information flow. J Neurosci 28:9797–9805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Belujon P, Patton MH, Grace AA (2014) Role of the prefrontal cortex in altered hippocampal-accumbens synaptic plasticity in a developmental animal model of schizophrenia. Cereb Cortex 24:968–977

    Article  PubMed  Google Scholar 

  78. Belujon P, Patton MH, Grace AA (2013) Disruption of prefrontal cortical-hippocampal balance in a developmental model of schizophrenia: reversal by sulpiride. Int J Neuropsychopharmacol 16:507–512

    Article  CAS  PubMed  Google Scholar 

  79. Gruber AJ, McDonald RJ (2012) Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behavior. Front Behav Neurosci 6:50

    Article  PubMed  PubMed Central  Google Scholar 

  80. Manning JR, Jacobs J, Fried I, Kahana MJ (2009) Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci 29:13613–13620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ray S, Maunsell JH (2011) Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol 9:e1000610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pittman-Polletta BR, Kocsis B, Vijayan S, Whittington MA, Kopell NJ (2015) Brain rhythms connect impaired inhibition to altered cognition in schizophrenia. Biol Psychiatry 77:1020–1030

    Article  PubMed  PubMed Central  Google Scholar 

  83. Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci 13:121–134

    Article  CAS  PubMed  Google Scholar 

  84. Kopell N, Börgers C, Pervouchine D, Malerba P, Tort A (2010) Gamma and theta rhythms in biophysical models of hippocampal circuits. In: Hippocampal microcircuits. Springer, pp 423–457

    Chapter  Google Scholar 

  85. Scheffer-Teixeira R, Belchior H, Leao RN, Ribeiro S, Tort AB (2013) On high-frequency field oscillations (>100 Hz) and the spectral leakage of spiking activity. J Neurosci 33:1535–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Scheffer-Teixeira R, Tort ABL (2017) Unveiling fast field oscillations through comodulation. eNeuro 4:ENEURO.0079-17

    Google Scholar 

  87. Tort AB, Scheffer-Teixeira R, Souza BC, Draguhn A, Brankack J (2013) Theta-associated high-frequency oscillations (110-160Hz) in the hippocampus and neocortex. Prog Neurobiol 100:1–14

    Article  PubMed  Google Scholar 

  88. Trongnetrpunya A, Nandi B, Kang D, Kocsis B, Schroeder CE, Ding M (2015) Assessing granger causality in electrophysiological data: removing the adverse effects of common signals via bipolar derivations. Front Syst Neurosci 9:189

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernat Kocsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pittman-Polletta, B.R., Kocsis, B. (2022). Assessing Neural Circuit Interactions and Dynamics with Phase-Amplitude Coupling. In: Vertes, R.P., Allen, T. (eds) Electrophysiological Recording Techniques. Neuromethods, vol 192. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2631-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2631-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2630-6

  • Online ISBN: 978-1-0716-2631-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation