Automated Microscopy Image Segmentation and Analysis with Machine Learning

  • Protocol
  • First Online:
Fluorescent Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2440))

Abstract

The development of automated quantitative image analysis pipelines requires thoughtful considerations to extract meaningful information. Commonly, extraction rules for quantitative parameters are defined and agreed beforehand to ensure repeatability between annotators. Machine/Deep Learning (ML/DL) now provides tools to automatically extract the set of rules to obtain quantitative information from the images (e.g. segmentation, enumeration, classification, etc.). Many parameters must be considered in the development of proper ML/DL pipelines. We herein present the important vocabulary, the necessary steps to create a thorough image segmentation pipeline, and also discuss technical aspects that should be considered in the development of automated image analysis pipelines through ML/DL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 137.14
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allan C, Burel JM, Moore J et al (2012) OMERO: flexible, model-driven data management for experimental biology. Nat Methods 9(3):245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alpaydin E (2009) Introduction to machine learning. MIT Press, Cambridge, MA

    Google Scholar 

  3. Anderson J, Mohammed S, Grimm B et al (2011) The Viking viewer for connectomics: scalable multi-user annotation and summarization of large volume data sets. J Microsc 241(1):13–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arganda-Carreras I, Kaynig V, Rueden C et al (2017) Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33(15):2424–2426

    Article  CAS  PubMed  Google Scholar 

  5. Berg S, Kutra D, Kroeger T et al (2019) ilastik: interactive machine learning for (bio)image analysis. Nat Methods 1–7

    Google Scholar 

  6. Bilodeau A, Delmas C, Parent M et al (2021) MICRA-Net: MICRoscopy Analysis Neural Network to solve detection, classification, and segmentation from a single simple auxiliary task. bioRxiv 2021.06.29.448970

    Google Scholar 

  7. Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26:1124–1137

    Article  PubMed  Google Scholar 

  8. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  9. Caicedo JC, Goodman A, Karhohs KW et al (2019a) Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl. Nat Methods 16(12):1247–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caicedo JC, Roth J, Goodman A et al (2019b) Evaluation of deep learning strategies for nucleus segmentation in fluorescence images. Cytom Part A 95(9):952–965

    Article  Google Scholar 

  11. Cordts M, Omran M, Ramos S et al (2016) The cityscapes dataset for semantic urban scene understanding. ar**v:160401685 [cs] 1604.01685

    Google Scholar 

  12. Cortes C, Mohri M, Rostamizadeh A (2012) L2 regularization for learning kernels. ar**v preprint ar**v:12052653

    Google Scholar 

  13. Falk T, Mai D, Bensch R et al (2019) U-net: deep learning for cell counting, detection, and morphometry. Nat Methods 16(1):67

    Article  CAS  PubMed  Google Scholar 

  14. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press. http://www.deeplearningbook.org

    Google Scholar 

  15. Gupta A, Harrison PJ, Wieslander H et al (2019) Deep learning in image cytometry: a review. Cytom Part A 95(4):366–380

    Article  Google Scholar 

  16. He K, Gkioxari G, Dollár P et al (2018) Mask R-CNN. ar**v:170306870 [cs] 1703.06870

    Google Scholar 

  17. Hossin M, Sulaiman M (2015) A review on evaluation metrics for data classification evaluations. Int J Data Min Knowl Manag Process 5(2):1

    Article  Google Scholar 

  18. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. ar**v:150203167 [cs] 1502.03167

    Google Scholar 

  19. Kawaguchi K, Kaelbling LP, Bengio Y (2017) Generalization in deep learning. ar**v preprint ar**v:171005468

    Google Scholar 

  20. Khoreva A, Benenson R, Hosang J et al (2017) Simple does it: weakly supervised instance and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 876–885

    Google Scholar 

  21. Kiefer J, Wolfowitz J et al (1952) Stochastic estimation of the maximum of a regression function. Ann Math Stat 23(3):462–466

    Article  Google Scholar 

  22. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. ar**v preprint ar**v:14126980

    Google Scholar 

  23. Kotsiantis S, Kanellopoulos D, Pintelas P et al (2006) Handling imbalanced datasets: a review. GESTS Int Trans Comput Sci Eng 30(1):25–36

    Google Scholar 

  24. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

    Google Scholar 

  25. Kromp F, Fischer L, Bozsaky E et al (2019) Deep learning architectures for generalized immunofluorescence based nuclear image segmentation. ar**v:190712975 [cs, q-bio] 1907.12975

    Google Scholar 

  26. Kromp F, Bozsaky E, Rifatbegovic F et al (2020) An annotated fluorescence image dataset for training nuclear segmentation methods. Sci Data 7(1):262

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lavoie-Cardinal F, Bilodeau A, Lemieux M et al (2020) Neuronal activity remodels the F-actin based submembrane lattice in dendrites but not axons of hippocampal neurons. Sci Rep 10(1):11960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436

    Article  CAS  PubMed  Google Scholar 

  29. Lin TY, Maire M, Belongie S et al (2014) Microsoft coco: common objects in context. In: European conference on computer vision. Springer, pp 740–755

    Google Scholar 

  30. Linkert M, Rueden CT, Allan C et al (2010) Metadata matters: access to image data in the real world. J Cell Biol 189(5):777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

    Google Scholar 

  32. Moen E, Bannon D, Kudo T et al (2019) Deep learning for cellular image analysis. Nature Methods 1–14

    Google Scholar 

  33. Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: ICML

    Google Scholar 

  34. Olah C, Mordvintsev A, Schubert L (2017) Feature visualization. Distill https://distill.pub/2017/feature-visualization

  35. Papandreou G, Chen LC, Murphy KP et al (2015) Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: Proceedings of the IEEE international conference on computer vision, pp 1742–1750

    Google Scholar 

  36. Qian N (1999) On the momentum term in gradient descent learning algorithms. Neural Netw 12(1):145–151

    Article  CAS  PubMed  Google Scholar 

  37. Raghu M, Zhang C, Kleinberg J et al (2019) Transfusion: understanding transfer learning for medical imaging. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R (eds) Advances in neural information processing systems, vol 32. Curran Associates, Inc., pp 3347–3357

    Google Scholar 

  38. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241

    Google Scholar 

  39. Rübel O, Tritt A, Dichter B et al (2019) NWB:N 2.0: an accessible data standard for neurophysiology. bioRxiv p 523035

    Google Scholar 

  40. Sarkans U, Chiu W, Collinson L et al (2021) REMBI: Recommended Metadata for Biological Images—enabling reuse of microscopy data in biology. Nat Methods 1–5

    Google Scholar 

  41. Schermelleh L, Ferrand A, Huser T et al (2019) Super-resolution microscopy demystified. Nat Cell Biol 21(1):72

    Article  CAS  PubMed  Google Scholar 

  42. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676

    Article  CAS  PubMed  Google Scholar 

  43. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. ar**v preprint ar**v:14091556

    Google Scholar 

  44. Sommer C, Gerlich DW (2013) Machine learning in cell biology–teaching computers to recognize phenotypes. J Cell Sci 126(24):5529–5539

    CAS  PubMed  Google Scholar 

  45. Sommer C, Straehle C, Koethe U et al (2011) Ilastik: interactive learning and segmentation toolkit. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 230–233

    Google Scholar 

  46. Stringer C, Wang T, Michaelos M et al (2021) Cellpose: a generalist algorithm for cellular segmentation. Nat Methods 18(1):100–106

    Article  CAS  PubMed  Google Scholar 

  47. Ulman V, Maška M, Magnusson KE, Ronneberger O, Haubold C, Harder N, Matula P, Matula, P, Svoboda D, Radojevic M, Smal I (2017) An objective comparison of cell tracking algorithms. Nat Methods 14(12):1141–1152

    Google Scholar 

  48. Vicar T, Balvan J, Jaros J others (2019) Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison. BMC Bioinformatics 20(1):360

    Google Scholar 

  49. Vohs KD, Baumeister RF, Schmeichel BJ et al (2008) Making choices impairs subsequent self-control: a limited-resource account of decision making, self-regulation, and active initiative. J Pers Soc Psychol 94(5):883–898

    Article  PubMed  Google Scholar 

  50. **e Y, **ng F, Kong X et al (2015) Beyond classification: structured regression for robust cell detection using convolutional neural network. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 358–365

    Google Scholar 

  51. Yang L, Zhang Y, Zhao Z et al (2018) BoxNet: deep learning based biomedical image segmentation using boxes only annotation. ar**v preprint ar**v:180600593

    Google Scholar 

  52. Yeghiazaryan V, Voiculescu ID (2018) Family of boundary overlap metrics for the evaluation of medical image segmentation. J Med Imag 5(1):015006

    Google Scholar 

  53. Bártová E, Šustáčková, G, Stixová, L, Kozubek, S., Legartová, S Foltánková, V (2011) Recruitment of Oct4 protein to UV-damaged chromatin in embryonic stem cells.닏PLoS One, 6(12):e27281

    Google Scholar 

Download references

Acknowledgements

Annette Schwerdtfeger for careful proofreading of the manuscript. Funding was provided by grants from the Natural Sciences and Engineering Research Council of Canada and the Neuronex Initiative (National Science Foundation, Fond de recherche du Québec – Santé). F.L.C. is a Canada Research Chair Tier II, A.B. and C.B. are both supported by a PhD scholarship from the Fonds de recherche du QuÕbec - Nature et technologies (FRQNT), an excellence scholarship from the FRQNT strategic cluster UNIQUE, and C.B. by a Leadership and Scientific Engagement Award from Université Laval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavie Lavoie-Cardinal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bilodeau, A., Bouchard, C., Lavoie-Cardinal, F. (2022). Automated Microscopy Image Segmentation and Analysis with Machine Learning. In: Heit, B. (eds) Fluorescent Microscopy. Methods in Molecular Biology, vol 2440. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2051-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2051-9_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2050-2

  • Online ISBN: 978-1-0716-2051-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation