Influence of Social Defeat Stress on the Rewarding Effects of Drugs of Abuse

  • Protocol
  • First Online:
Methods for Preclinical Research in Addiction

Abstract

Drug addiction is a serious problem in our society. Some individuals develop dependence to different substances very accessible in the market, mainly young people. It is known that different biological and environmental variables facilitate the initiation, maintenance and relapse to drug use. In this sense, social stress is an important factor involved in the development of drug addiction and animal models are an optimal tool to study neurobiological systems associated with stress and addictive disorders. Among the main paradigms of social stress, the social defeat in an agonistic encounter with a conspecific male rodent has a notable ethological validity. Two main procedures, “acute” or “repeated” social defeat, may be distinguished, being the main differences between both the duration and intensity of the social defeat episodes and the evaluation of their short/long-term effects. Indeed, it has been demonstrated that the effects of both types of stress on the self-administration or conditioned place preference induced by different drugs are different. Although acute and repeated social defeat procedures have some limitations, in general terms both paradigms can help us to draw conclusions about the relationship between stress and drug addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 69.54
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 68.56
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 02 March 2022

    The book was inadvertently published with the below mentioned errors

References

  1. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3(8):760–773. S2215-0366(16)00104-8 [pii]

    Article  Google Scholar 

  2. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th. Edition (DSM-5). American Psychiatric Association, Washington, DC

    Book  Google Scholar 

  3. UNODC (2019) World drug report 2019. https://wdr.unodc.org/wdr2019/prelaunch/pre-launchpresentation_WDR_2019.pdf

  4. EMCDDA (2019) European drug report 2019: trends and developments. https://www.emcdda.europa.eu/system/files/publications/11364/20191724_TDAT19001ENN_PDF.pdf

  5. Meng W, Sjoholm LK, Kononenko O, Tay N, Zhang D, Sarkisyan D et al (2019) Genotype-dependent epigenetic regulation of DLGAP2 in alcohol use and dependence. Mol Psychiatry. https://doi.org/10.1038/s41380-019-0588-9

  6. Koob GF (2010) The role of CRF and CRF-related peptides in the dark side of addiction. Brain Res 1314:3–14. https://doi.org/10.1016/j.brainres.2009.11.008

    Article  CAS  PubMed  Google Scholar 

  7. Sinha R (2008) Chronic stress, drug use, and vulnerability to addiction. Ann N Y Acad Sci 1141:105–130. https://doi.org/10.1196/annals.1441.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sinha R, Shaham Y, Heilig M (2011) Translational and reverse translational research on the role of stress in drug craving and relapse. Psychopharmacology 218(1):69–82. https://doi.org/10.1007/s00213-011-2263-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Logrip ML, Zorrilla EP, Koob GF (2012) Stress modulation of drug self-administration: implications for addiction comorbidity with post-traumatic stress disorder. Neuropharmacology 62(2):552–564. https://doi.org/10.1016/j.neuropharm.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  10. Gould TJ (2010) Addiction and cognition. Add Sci Clin Pract 5(2):4–14. https://www.ncbi.nlm.nih.gov/pubmed/22002448

    Google Scholar 

  11. Rodríguez-Arias M, García-Pardo MP, Montagud-Romero S, Miñarro J, Aguilar MA (2013) The role of stress in psychostimulant addiction: treatment approaches based on animal models. In: Drug use and abuse: signs/symptoms, physical and psychological effects and intervention approaches, pp 153–220

    Google Scholar 

  12. Buffalari DM, Baldwin CK, Feltenstein MW, See RE (2012) Corticotrophin releasing factor (CRF) induced reinstatement of cocaine seeking in male and female rats. Physiol Behav 105(2):209–214. https://doi.org/10.1016/j.physbeh.2011.08.020

    Article  CAS  PubMed  Google Scholar 

  13. Shalev U, Erb S, Shaham Y (2010) Role of CRF and other neuropeptides in stress-induced reinstatement of drug seeking. Brain Res 1314:15–28. https://doi.org/10.1016/j.brainres.2009.07.028

    Article  CAS  PubMed  Google Scholar 

  14. Ribeiro Do Couto B, Aguilar MA, Manzanedo C, Rodríguez-Arias M, Armario A, Minarro J (2006) Social stress is as effective as physical stress in reinstating morphine-induced place preference in mice. Psychopharmacology 185(4):459–470. https://doi.org/10.1007/s00213-006-0345-z

    Article  CAS  PubMed  Google Scholar 

  15. Shalev U, Marinelli M, Baumann MH, Piazza PV, Shaham Y (2003) The role of corticosterone in food deprivation-induced reinstatement of cocaine seeking in the rat. Psychopharmacology 168(1–2):170–176. https://doi.org/10.1007/s00213-002-1200-5

    Article  CAS  PubMed  Google Scholar 

  16. Mantsch JR, Weyer A, Vranjkovic O, Beyer CE, Baker DA, Caretta H (2010) Involvement of noradrenergic neurotransmission in the stress- but not cocaine-induced reinstatement of extinguished cocaine-induced conditioned place preference in mice: role for beta-2 adrenergic receptors. Neuropsychopharmacology 35(11):2165–2178. https://doi.org/10.1038/npp.2010.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller LL, Ward SJ, Dykstra LA (2008) Chronic unpredictable stress enhances cocaine-conditioned place preference in type 1 cannabinoid receptor knockout mice. Behav Pharmacol 19(5–6):575–581. https://doi.org/10.1097/FBP.0b013e32830ded11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ding YJ, Kang L, Li BM, Ma L (2005) Enhanced cocaine self-administration in adult rats with adolescent isolation experience. Pharmacol Biochem Behav 82:673–677. https://doi.org/10.1016/j.pbb.2005.11.007

    Article  CAS  Google Scholar 

  19. Ribeiro Do Couto B, Aguilar MA, Lluch J, Rodríguez-Arias M, Minarro J (2009) Social experiences affect reinstatement of cocaine-induced place preference in mice. Psychopharmacology 207(3):485–498. https://doi.org/10.1007/s00213-009-1678-1

    Article  CAS  PubMed  Google Scholar 

  20. García-Pardo MP, Blanco-Gandía MC, Valiente-Lluch M, Rodríguez-Arias M, Miñarro J, Aguilar MA (2015) Long-term effects of repeated social stress on the conditioned place preference induced by MDMA in mice. Prog Neuropsychopharmacol Biol Psychiatry 63:98–109. https://doi.org/10.1016/j.pnpbp.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  21. Dalley JW, Everitt BJ (2009) Dopamine receptors in the learning, memory and drug reward circuitry. Semin Cell Dev Biol 20(4):403–410. https://doi.org/10.1016/j.semcdb.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  22. Wise RA (2009) Ventral tegmental glutamate: a role in stress-, cue-, and cocaine-induced reinstatement of cocaine-seeking. Neuropharmacology 56(Suppl 1):174–176. https://doi.org/10.1016/j.neuropharm.2008.06.008

    Article  CAS  PubMed  Google Scholar 

  23. Koob GF (2009) Dynamics of neuronal circuits in addiction: reward, antireward, and emotional memory. Pharmacopsychiatry 42(Suppl 1):32. https://doi.org/10.1055/s-0029-1216356

    Article  Google Scholar 

  24. Rosenkranz JA, Moore H, Grace AA (2003) The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. J Neurosci 23(35):11054–11064. https://doi.org/10.1523/JNEUROSCI.23-35-11054.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barthas F, Hu MY, Siniscalchi MJ, Ali F, Mineur YS, Picciotto MR, Kwan AC (2020) Cumulative effects of social stress on reward-guided actions and prefrontal cortical activity. Biol Psychiatry. S0006-3223(20)30097-4 [pii]

    Google Scholar 

  26. García Pardo MP, Roger Sánchez C, De la Rubia Ortí JE, Aguilar Calpe MA (2017) Animal models of drug addiction. Adicciones 29(4):278–292. https://doi.org/10.20882/adicciones.862

    Article  PubMed  Google Scholar 

  27. García-Pardo MP, Rodríguez-Arias M, Maldonado C, Manzanedo C, Miñarro J, Aguilar MA (2014) Effects of acute social stress on the conditioned place preference induced by MDMA in adolescent and adult mice. Behav Pharmacol 25(5–6):532–546. https://doi.org/10.1097/FBP.0000000000000065

    Article  CAS  PubMed  Google Scholar 

  28. Montagud-Romero S, Aguilar MA, Maldonado C, Manzanedo C, Miñarro J, Rodríguez-Arias M (2015) Acute social defeat stress increases the conditioned rewarding effects of cocaine in adult but not in adolescent mice. Pharmacol Biochem Behav 135:1–12. https://doi.org/10.1016/j.pbb.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  29. Miczek KA, Yap JJ, Covington HE (2008) Social stress, therapeutics and drug abuse: preclinical models of escalated and depressed intake. Pharmacol Ther 120(2):102–128. https://doi.org/10.1016/j.pharmthera.2008.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Montagud-Romero S, Blanco-Gandía MC, Reguilón MD, Ferrer-Pérez C, Ballestín R, Miñarro J, Rodríguez-Arias M (2018) Social defeat stress: mechanisms underlying the increase in rewarding effects of drugs of abuse. Eur J Neurosci 48(9):2948–2970. https://doi.org/10.1111/ejn.14127

    Article  PubMed  Google Scholar 

  31. Caldwell EE, Riccio DC (2010) Alcohol self-administration in rats: modulation by temporal parameters related to repeated mild social defeat stress. Alcohol (Fayetteville, NY) 44(3):265–274. https://doi.org/10.1016/j.alcohol.2010.02.012

    Article  CAS  Google Scholar 

  32. Rodríguez-Arias M, Navarrete F, Blanco-Gandia MC, Arenas MC, Bartoll-Andrés A, Aguilar MA, Rubio G, Miñarro J, Manzanares J (2016) Social defeat in adolescent mice increases vulnerability to alcohol consumption. Addict Biol 21(1):87–97. https://doi.org/10.1111/adb.12184

    Article  CAS  PubMed  Google Scholar 

  33. Norman KJ, Seiden JA, Klickstein JA, Han X, Hwa LS, DeBold JF, Miczek KA (2015) Social stress and escalated drug self-administration in mice I. alcohol and corticosterone. Psychopharmacology 232(6):991–1001. https://doi.org/10.1007/s00213-014-3733-9

    Article  CAS  PubMed  Google Scholar 

  34. Funk D, Vohra S, Le AD (2004) Influence of stressors on the rewarding effects of alcohol in wistar rats: studies with alcohol deprivation and place conditioning. Psychopharmacology 176(1):82–87. https://doi.org/10.1007/s00213-004-1859-x

    Article  CAS  PubMed  Google Scholar 

  35. van Erp AM, Miczek KA (2001) Persistent suppression of ethanol self-administration by brief social stress in rats and increased startle response as index of withdrawal. Physiol Behav 73(3):301–311. S0031-9384(01)00458-9 [pii]

    Article  Google Scholar 

  36. van Erp AM, Tachi N, Miczek KA (2001) Short or continuous social stress: suppression of continuously available ethanol intake in subordinate rats. Behav Pharmacol 12(5):335–342. https://doi.org/10.1097/00008877-200109000-00004

    Article  PubMed  Google Scholar 

  37. Funk D, Harding S, Juzytsch W, Le AD (2005) Effects of unconditioned and conditioned social defeat on alcohol self-administration and reinstatement of alcohol seeking in rats. Psychopharmacology 183(3):341–349. https://doi.org/10.1007/s00213-005-0194-1

    Article  CAS  PubMed  Google Scholar 

  38. Bahi A (2013) Increased anxiety, voluntary alcohol consumption and ethanol-induced place preference in mice following chronic psychosocial stress. Stress (Amsterdam, Netherlands) 16(4):441–451. https://doi.org/10.3109/10253890.2012.754419

    Article  Google Scholar 

  39. Karlsson C, Schank JR, Rehman F, Stojakovic A, Bjork K, Barbier E et al (2017) Proinflammatory signaling regulates voluntary alcohol intake and stress-induced consumption after exposure to social defeat stress in mice. Addict Biol 22(5):1279–1288. https://doi.org/10.1111/adb.12416

    Article  CAS  PubMed  Google Scholar 

  40. Macedo GC, Morita GM, Domingues LP, Favoretto CA, Suchecki D, Quadros IMH (2018) Consequences of continuous social defeat stress on anxiety- and depressive-like behaviors and ethanol reward in mice. Horm Behav 97:154–161. S0018-506X(17)30138-1 [pii]

    Article  CAS  Google Scholar 

  41. Bahi A, Dreyer JL (2020) Environmental enrichment decreases chronic psychosocial stress-impaired extinction and reinstatement of ethanol conditioned place preference in C57BL/6 male mice. Psychopharmacology 237(3):707–721. https://doi.org/10.1007/s00213-019-05408-8

    Article  CAS  PubMed  Google Scholar 

  42. García-Pardo MP, Roger-Sánchez C, Rodríguez-Arias M, Miñarro J, Aguilar MA (2016) Effects of social stress on ethanol responsivity in adult mice. Neuropsychiatry 6. https://doi.org/10.4172/Neuropsychiatry.1000146

  43. Covington HE, Kikusui T, Goodhue J, Nikulina EM, Hammer RP, Miczek KA (2005) Brief social defeat stress: long lasting effects on cocaine taking during a binge and zif268 mRNA expression in the amygdala and prefrontal cortex. Neuropsychopharmacology 30(2):310–321

    Article  CAS  Google Scholar 

  44. Covington HE, Miczek KA (2005) Intense cocaine self-administration after episodic social defeat stress, but not after aggressive behavior: dissociation from corticosterone activation. Psychopharmacology 183(3):331–340. https://doi.org/10.1007/s00213-005-0190-5

    Article  CAS  PubMed  Google Scholar 

  45. Burke AR, Miczek KA (2015) Escalation of cocaine self-administration in adulthood after social defeat of adolescent rats: role of social experience and adaptive co** behavior. Psychopharmacology 232(16):3067–3079. https://doi.org/10.1007/s00213-015-3947-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boyson CO, Miguel TT, Quadros IM, Debold JF, Miczek KA (2011) Prevention of social stress-escalated cocaine self-administration by CRF-R1 antagonist in the rat VTA. Psychopharmacology 218(1):257–269. https://doi.org/10.1007/s00213-011-2266-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boyson CO, Holly EN, Shimamoto A, Albrechet-Souza L, Weiner LA, DeBold JF, Miczek KA (2014) Social stress and CRF-dopamine interactions in the VTA: role in long-term escalation of cocaine self-administration. J Neurosci 34(19):6659–6667. https://doi.org/10.1523/JNEUROSCI.3942-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cruz FC, Quadros IM, Hogenelst K, Planeta CS, Miczek KA (2011) Social defeat stress in rats: escalation of cocaine and “speedball” binge self-administration, but not heroin. Psychopharmacology 215(1):165–175. https://doi.org/10.1007/s00213-010-2139-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Han X, Albrechet-Souza L, Doyle MR, Shimamoto A, DeBold JF, Miczek KA (2015) Social stress and escalated drug self-administration in mice II. cocaine and dopamine in the nucleus accumbens. Psychopharmacology 232(6):1003–1010. https://doi.org/10.1007/s00213-014-3734-8

    Article  CAS  PubMed  Google Scholar 

  50. Miczek KA, Nikulina EM, Shimamoto A, Covington HE (2011) Escalated or suppressed cocaine reward, tegmental BDNF, and accumbal dopamine caused by episodic versus continuous social stress in rats. J Neurosci 31(27):9848–9857. https://doi.org/10.1523/JNEUROSCI.0637-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yap JJ, Chartoff EH, Holly EN, Potter DN, Carlezon WA, Miczek KA (2015) Social defeat stress-induced sensitization and escalated cocaine self-administration: the role of ERK signaling in the rat ventral tegmental area. Psychopharmacology 232(9):1555–1569. https://doi.org/10.1007/s00213-014-3796-7

    Article  CAS  PubMed  Google Scholar 

  52. Holly EN, Boyson CO, Montagud-Romero S, Stein DJ, Gobrogge KL, DeBold JF, Miczek KA (2016) Episodic social stress-escalated cocaine self-administration: role of phasic and tonic corticotropin releasing factor in the anterior and posterior ventral tegmental area. J Neurosci 36(14):4093–4105. https://doi.org/10.1523/JNEUROSCI.2232-15.2016

    Article  PubMed  PubMed Central  Google Scholar 

  53. Boyson CO, Holly EN, Burke AR, Montagud-Romero S, DeBold JF, Miczek KA (2016) Maladaptive choices by defeated rats: link between rapid approach to social threat and escalated cocaine self-administration. Psychopharmacology 233(17):3173–3186. https://doi.org/10.1007/s00213-016-4363-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yap JJ, Miczek KA (2007) Social defeat stress, sensitization, and intravenous cocaine self-administration in mice. Psychopharmacology 192(2):261–273. https://doi.org/10.1007/s00213-007-0712-4

    Article  CAS  PubMed  Google Scholar 

  55. Arena DT, Covington HE, DeBold JF, Miczek KA (2019) Persistent increase of I.V. cocaine self-administration in a subgroup of C57BL/6J male mice after social defeat stress. Psychopharmacology 236(7):2027–2037. https://doi.org/10.1007/s00213-019-05191-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rodríguez-Arias M, Montagud-Romero S, Rubio-Araiz A, Aguilar MA, Martín-García E, Cabrera R, Maldonado R, Porcu F, Colado MI, Miñarro J (2017) Effects of repeated social defeat on adolescent mice on cocaine-induced CPP and self-administration in adulthood: integrity of the blood-brain barrier. Addict Biol 22(1):129–141. https://doi.org/10.1111/adb.12301

    Article  CAS  PubMed  Google Scholar 

  57. Blouin AM, Pisupati S, Hoffer CG, Hafenbreidel M, Jamieson SE, Rumbaugh G, Miller CA (2019) Social stress-potentiated methamphetamine seeking. Addict Biol 24(5):958–968. https://doi.org/10.1111/adb.12666

    Article  CAS  PubMed  Google Scholar 

  58. McLaughlin JP, Land BB, Li S, Pintar JE, Chavkin C (2006) Prior activation of kappa opioid receptors by U50,488 mimics repeated forced swim stress to potentiate cocaine place preference conditioning. Neuropsychopharmacology 31(4):787–794

    Article  CAS  Google Scholar 

  59. García-Pardo MP, de la Rubia JE, Aguilar MA (2017) The influence of social stress on the reinforcing effect of ecstasy under the conditioned place preference paradigm: the role played by age, dose and type of stress. Rev Neurol 65(10):469–476

    PubMed  Google Scholar 

  60. Guerrero-Bautista R, Do Couto BR, Hidalgo JM, Cárceles-Moreno FJ, Molina G, Laorden ML, Núñez C, Milanés MV (2019) Modulation of stress- and cocaine prime-induced reinstatement of conditioned place preference after memory extinction through dopamine D3 receptor. Prog Neuro-Psychopharmacol Biol Psychiatry 92:308–320. https://doi.org/10.1016/j.pnpbp.2019.01.017

    Article  CAS  Google Scholar 

  61. Titomanlio F, Manzanedo C, Rodríguez-Arias M, Mattioli L, Perfumi M, Minarro J, Aguilar MA (2013) Rhodiola rosea impairs acquisition and expression of conditioned place preference induced by cocaine. Evid Based Complement Alternat Med 2013:697632. https://doi.org/10.1155/2013/697632

    Article  PubMed  PubMed Central  Google Scholar 

  62. Reguilon MD, Montagud-Romero S, Ferrer-Perez C, Roger-Sanchez C, Aguilar MA, Minarro J, Rodríguez-Arias M (2017) Dopamine D2 receptors mediate the increase in reinstatement of the conditioned rewarding effects of cocaine induced by acute social defeat. Eur J Pharmacol 799:48–57. S0014-2999(17)30048-1 [pii]

    Article  CAS  Google Scholar 

  63. Montagud-Romero S, Montesinos J, Pascual M, Aguilar MA, Roger-Sanchez C, Guerri C, Miñarro J, Rodríguez-Arias M (2016) Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine. Prog Neuro-Psychopharmacol Biol Psychiatry 70:39–48. https://doi.org/10.1016/j.pnpbp.2016.04.016

    Article  CAS  Google Scholar 

  64. Montagud-Romero S, Reguilon MD, Roger-Sanchez C, Pascual M, Aguilar MA, Guerri C, Miñarro J, Rodríguez-Arias M (2016) Role of dopamine neurotransmission in the long-term effects of repeated social defeat on the conditioned rewarding effects of cocaine. Prog Neuro-Psychopharmacol Biol Psychiatry 71:144–154. https://doi.org/10.1016/j.pnpbp.2016.07.008

    Article  CAS  Google Scholar 

  65. Montagud-Romero S, Nuñez C, Blanco-Gandia MC, Martínez-Laorden E, Aguilar MA, Navarro-Zaragoza J, Almela P, Milanés MV, Laorden ML, Miñarro J, Rodríguez-Arias M (2017) Repeated social defeat and the rewarding effects of cocaine in adult and adolescent mice: dopamine transcription factors, proBDNF signaling pathways, and the TrkB receptor in the mesolimbic system. Psychopharmacology 234(13):2063–2075. https://doi.org/10.1007/s00213-017-4612-y

    Article  CAS  PubMed  Google Scholar 

  66. Ferrer-Pérez C, Martinez TE, Montagud-Romero S, Ballestín R, Reguilón MD, Miñarro J, Rodríguez-Arias M (2018) Indomethacin blocks the increased conditioned rewarding effects of cocaine induced by repeated social defeat. PLoS One 13(12):e0209291. https://doi.org/10.1371/journal.pone.0209291

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ferrer-Pérez C, Reguilón MD, Manzanedo C, Aguilar MA, Miñarro J, Rodríguez-Arias M (2018) Antagonism of corticotropin-releasing factor CRF1 receptors blocks the enhanced response to cocaine after social stress. Eur J Pharmacol 823:87–95. https://doi.org/10.1016/j.ejphar.2018.01.052

    Article  CAS  PubMed  Google Scholar 

  68. Ferrer-Pérez C, Castro-Zavala A, Luján MÁ, Filarowska J, Ballestín R, Miñarro J, Valverde O, Rodríguez-Arias M (2019) Oxytocin prevents the increase of cocaine-related responses produced by social defeat. Neuropharmacology 146:50–64. https://doi.org/10.1016/j.neuropharm.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  69. Montagud-Romero S, Montesinos J, Pavón FJ, Blanco-Gandia MC, Ballestín R, Rodríguez de Fonseca F, Miñarro J, Guerri C, Rodríguez-Arias M (2020) Social defeat-induced increase in the conditioned rewarding effects of cocaine: role of CX3CL1. Prog Neuro-Psychopharmacol Biol Psychiatry 96:109753. https://doi.org/10.1016/j.pnpbp.2019.109753

    Article  CAS  Google Scholar 

  70. Rodríguez-Arias M, Montagud-Romero S, Guardia Carrión AM, Ferrer-Pérez C, Pérez-Villalba A, Marco E, López Gallardo M, Viveros MP, Miñarro J (2018) Social stress during adolescence activates long-term microglia inflammation insult in reward processing nuclei. PLoS One 13(10):e0206421. https://doi.org/10.1371/journal.pone.0206421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. García-Pardo MP, Miñarro J, Llansola M, Felipo V, Aguilar MA (2019) Role of NMDA and AMPA glutamatergic receptors in the effects of social defeat on the rewarding properties of MDMA in mice. Eur J Neurosci 50(3):2623–2634. https://doi.org/10.1111/ejn.14190

    Article  PubMed  Google Scholar 

  72. García-Pardo MP, Llansola M, Felipo V, De la Rubia Ortí JE, Aguilar MA (2020) Blockade of nitric oxide signalling promotes resilience to the effects of social defeat stress on the conditioned rewarding properties of MDMA in mice. Nitric Oxide 98:29–32. https://doi.org/10.1016/j.niox.2020.03.001

    Article  CAS  PubMed  Google Scholar 

  73. Coventry TL, D’Aquila PS, Brain P, Willner P (1997) Social influences on morphine conditioned place preference. Behav Pharmacol 8(6–7):575–584. https://doi.org/10.1097/00008877-199711000-00015

    Article  CAS  PubMed  Google Scholar 

  74. Tomek SE, Stegmann GM, Olive MF (2019) Effects of heroin on rat prosocial behavior. Addict Biol 24(4):676–684. https://doi.org/10.1111/adb.12633

    Article  CAS  PubMed  Google Scholar 

  75. Rodríguez-Arias M, Minarro J, Aguilar MA, Pinazo J, Simon VM (1998) Effects of risperidone and SCH 23390 on isolation-induced aggression in male mice. Eur Neuropsychopharmacol 8(2):95–103. S0924-977X(97)00051-5 [pii]

    Article  Google Scholar 

  76. Miczek KA, Thompson ML, Shuster L (1982) Opioid-like analgesia in defeated mice. Science (New York, NY) 215(4539):1520–1522. https://doi.org/10.1126/science.7199758

    Article  CAS  Google Scholar 

  77. Covington HE, Miczek KA (2001) Repeated social-defeat stress, cocaine or morphine. effects on behavioral sensitization and intravenous cocaine self-administration “binges”. Psychopharmacology 158(4):388–398. https://doi.org/10.1007/s002130100858

    Article  CAS  PubMed  Google Scholar 

  78. Miczek KA, Weerts EM, Tornatzky W, DeBold JF, Vatne TM (1992) Alcohol and “bursts” of aggressive behavior: ethological analysis of individual differences in rats. Psychopharmacology 107(4):551–563. https://doi.org/10.1007/BF02245270

    Article  CAS  PubMed  Google Scholar 

  79. Calpe-Lopez C, Garcia-Pardo MP, Martinez-Caballero MA, Santos-Ortiz A, Aguilar MA (2020) Behavioral traits associated with resilience to the effects of repeated social defeat on cocaine-induced conditioned place preference in mice. Front Behav Neurosci 13:278. https://doi.org/10.3389/fnbeh.2019.00278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tornatzky W, Miczek KA (1993) Long-term impairment of autonomic circadian rhythms after brief intermittent social stress. Physiol Behav 53(5):983–993. 0031-9384(93)90278-N [pii]

    Article  CAS  Google Scholar 

  81. Rodríguez-Arias M, Montagud Romero S, Rubio A, Aguilar M, Martin-Garcia E, Cabrera R et al (2015) Effects of repeated social defeat on adolescent mice on cocaine-induced CPP and self-administration in adulthood: integrity of the blood-brain barrier. Addict Biol 22:129. https://doi.org/10.1111/adb.12301

    Article  CAS  PubMed  Google Scholar 

  82. Brain PF, McAllister KH, Wamsley SV (1989) Drug effects on social behavior. Methods in ethopharmacology. In: Boulton AA, Baker GB, Greeshaw AJ (eds) Neuromethods, vol 13. The Human Press, Clifton, NJ, pp 687–739

    Google Scholar 

  83. Holly EN, DeBold JF, Miczek KA (2015) Increased mesocorticolimbic dopamine during acute and repeated social defeat stress: modulation by corticotropin releasing factor receptors in the ventral tegmental area. Psychopharmacology 232(24):4469–4479. https://doi.org/10.1007/s00213-015-4082-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Leonard MZ, DeBold JF, Miczek KA (2017) Escalated cocaine “binges” in rats: enduring effects of social defeat stress or intra-VTA CRF. Psychopharmacology 234(18):2823–2836. https://doi.org/10.1007/s00213-017-4677-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vasconcelos M, Stein DJ, de Almeida RM (2015) Social defeat protocol and relevant biomarkers, implications for stress response physiology, drug abuse, mood disorders and individual stress vulnerability: a systematic review of the last decade. Trends Psychiatry Psychother 37(2):51–66. https://doi.org/10.1590/2237-6089-2014-0034

    Article  PubMed  Google Scholar 

  86. García-Pardo MP, Calpe-López C, Miñarro J, Aguilar MA (2019) Role of N-methyl-D-aspartate receptors in the long-term effects of repeated social defeat stress on the rewarding and psychomotor properties of cocaine in mice. Behav Brain Res 361:95–103. https://doi.org/10.1016/j.bbr.2018.12.025

    Article  CAS  PubMed  Google Scholar 

  87. Wang J, Bastle RM, Bass CE, Hammer RP, Neisewander JL, Nikulina EM (2016) Overexpression of BDNF in the ventral tegmental area enhances binge cocaine self-administration in rats exposed to repeated social defeat. Neuropharmacology 109:121–130. https://doi.org/10.1016/j.neuropharm.2016.04.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Montesinos J, Castilla-Ortega E, Sanchez-Marin L, Montagud-Romero S, Araos P, Pedraz M et al (2020) Cocaine-induced changes in CX3CL1 and inflammatory signaling pathways in the hippocampus: association with IL1beta. Neuropharmacology 162:107840. S0028-3908(19)30406-X [pii]

    Article  CAS  Google Scholar 

  89. Shimamoto A (2018) Social defeat stress, sex, and addiction-like behaviors. Int Rev Neurobiol 140:271–313. S0074-7742(18)30038-2 [pii]

    Article  Google Scholar 

  90. Ashokan A, Sivasubramanian M, Mitra R (2016) Seeding stress resilience through inoculation. Neural Plasticity 2016:4928081. https://doi.org/10.1155/2016/4928081

    Article  PubMed  PubMed Central  Google Scholar 

  91. Brockhurst J, Cheleuitte-Nieves C, Buckmaster CL, Schatzberg AF, Lyons DM (2015) Stress inoculation modeled in mice. Transl Psychiatry 5:e537. https://doi.org/10.1038/tp.2015.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Pilar García-Pardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

García-Pardo, M.P., De la Rubia-Ortí, J.E., Calpe-López, C., Martínez-Caballero, M.Á., Aguilar, M.A. (2022). Influence of Social Defeat Stress on the Rewarding Effects of Drugs of Abuse. In: Aguilar, M.A. (eds) Methods for Preclinical Research in Addiction. Neuromethods, vol 174. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1748-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1748-9_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1747-2

  • Online ISBN: 978-1-0716-1748-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation