Transcranial Direct Current Stimulation to Reduce Addiction-Related Behaviors in Mice

  • Protocol
  • First Online:
Methods for Preclinical Research in Addiction

Part of the book series: Neuromethods ((NM,volume 174))

Abstract

Transcranial direct current stimulation (tDCS) is a neuromodulation method used in humans to increase or decrease cortical excitability in a noninvasive and painless manner. A weak electric current flows between two electrodes, an anode and a cathode, placed on the scalp. This technique has gained considerable interest recently as a tool for the treatment of several psychiatric disorders, including depression and addiction. However, the mechanisms underlying its beneficial effects remain poorly understood, requiring further investigations in human as well as animal models. In Besançon (Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté), we have developed a mouse model of tDCS to study its mechanisms of action, using a stimulation protocol similar to those in clinical trials. In this chapter, we will describe this model and its different variants (i.e., tDCS on awake restrained mice; tDCS on anesthetized mice; tDCS in freely moving mice).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stagg CJ, Nitsche MA (2011) Physiological basis of transcranial direct current stimulation. Neuroscientist 17:37–53

    Article  PubMed  Google Scholar 

  2. Philip NS, Nelson B, Frohlich F et al (2017) Low-intensity transcranial current stimulation in psychiatry. Am J Psychiatry 174:628–639

    Article  PubMed  PubMed Central  Google Scholar 

  3. Garavan H, Hester R (2007) The role of cognitive control in cocaine dependence. Neuropsychol Rev 17:337–345

    Article  PubMed  Google Scholar 

  4. Koob GF, Volkow ND (2009) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238

    Article  PubMed Central  Google Scholar 

  5. Brunoni AR, Ferrucci R, Fregni F et al (2012) Transcranial direct current stimulation for the treatment of major depressive disorder: a summary of preclinical, clinical and translational findings. Prog Neuro-Psychopharmacol Biol Psychiatry 39:9–16

    Article  Google Scholar 

  6. Nitsche MA, Boggio PS, Fregni F et al (2009) Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp Neurol 219:14–19

    Article  PubMed  Google Scholar 

  7. Ekhtiari H, Tavakoli H, Addolorato G et al (2019) Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: a consensus paper on the present state of the science and the road ahead. Neurosci Biobehav Rev 104:118–140

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boggio PS, Sultani N, Fecteau S et al (2008) Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol Depend 92:55–60

    Article  PubMed  Google Scholar 

  9. Holla B, Biswal J, Ramesh V et al (2020) Effect of prefrontal tDCS on resting brain fMRI graph measures in alcohol use disorders: a randomized, double-blind, sham-controlled study. Prog Neuro-Psychopharmacol Biol Psychiatry 102:109950

    Article  Google Scholar 

  10. Klauss J, Penido Pinheiro LC, Silva Merlo BL et al (2014) A randomized controlled trial of targeted prefrontal cortex modulation with tDCS in patients with alcohol dependence. Int J Neuropsychopharmacol 17:1793–1803

    Article  PubMed  Google Scholar 

  11. Klauss J, Anders QS, Felippe LV et al (2018) Multiple sessions of transcranial direct current stimulation (tDCS) reduced craving and relapses for alcohol use: a randomized placebo-controlled trial in alcohol use disorder. Front Pharmacol 9:716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nakamura-Palacios EM, de Almeida Benevides MC, da Penha Zago-Gomes M et al (2012) Auditory event-related potentials (P3) and cognitive changes induced by frontal direct current stimulation in alcoholics according to Lesch alcoholism typology. Int J Neuropsychopharmacol 15:601–616

    Article  PubMed  Google Scholar 

  13. Nakamura-Palacios EM, Lopes IBC, Souza RA et al (2016) Ventral medial prefrontal cortex (vmPFC) as a target of the dorsolateral prefrontal modulation by transcranial direct current stimulation (tDCS) in drug addiction. J Neural Transm (Vienna) 123:1179–1194

    Article  CAS  Google Scholar 

  14. da Silva MC, Conti CL, Klauss J et al (2013) Behavioral effects of transcranial direct current stimulation (tDCS) induced dorsolateral prefrontal cortex plasticity in alcohol dependence. J Physiol Paris 107:493–502

    Article  PubMed  Google Scholar 

  15. den Uyl TE, Gladwin TE, Wiers RW (2015) Transcranial direct current stimulation, implicit alcohol associations and craving. Biol Psychol 105:37–42

    Article  Google Scholar 

  16. den Uyl TE, Gladwin TE, Wiers RW (2016) Electrophysiological and behavioral effects of combined transcranial direct current stimulation and alcohol approach bias retraining in hazardous drinkers. Alcohol Clin Exp Res 40:2124–2133

    Article  Google Scholar 

  17. den Uyl TE, Gladwin TE, Rinck M et al (2017) A clinical trial with combined transcranial direct current stimulation and alcohol approach bias retraining. Addict Biol 22:1632–1640

    Article  Google Scholar 

  18. Vanderhasselt M-A, Allaert J, De Raedt R et al (2020) Bifrontal tDCS applied to the dorsolateral prefrontal cortex in heavy drinkers: influence on reward-triggered approach bias and alcohol consumption. Brain Cogn 138:105512

    Article  PubMed  Google Scholar 

  19. Wietschorke K, Lippold J, Jacob C et al (2016) Transcranial direct current stimulation of the prefrontal cortex reduces cue-reactivity in alcohol-dependent patients. J Neural Transm (Vienna) 123:1173–1178

    Article  Google Scholar 

  20. Boggio PS, Liguori P, Sultani N et al (2009) Cumulative priming effects of cortical stimulation on smoking cue-induced craving. Neurosci Lett 463:82–86

    Article  CAS  PubMed  Google Scholar 

  21. Falcone M, Bernardo L, Ashare RL et al (2016) Transcranial direct current brain stimulation increases ability to resist smoking. Brain Stimul 9:191–196

    Article  PubMed  Google Scholar 

  22. Falcone M, Bernardo L, Wileyto EP et al (2019) Lack of effect of transcranial direct current stimulation (tDCS) on short-term smoking cessation: results of a randomized, sham-controlled clinical trial. Drug Alcohol Depend 194:244–251

    Article  PubMed  Google Scholar 

  23. Fecteau S, Agosta S, Hone-Blanchet A et al (2014) Modulation of smoking and decision-making behaviors with transcranial direct current stimulation in tobacco smokers: a preliminary study. Drug Alcohol Depend 140:78–84

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fregni F, Liguori P, Fecteau S et al (2008) Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cue-provoked smoking craving: a randomized, sham-controlled study. J Clin Psychiatry 69:32–40

    Article  PubMed  Google Scholar 

  25. Kroczek AM, Häußinger FB, Rohe T et al (2016) Effects of transcranial direct current stimulation on craving, heart-rate variability and prefrontal hemodynamics during smoking cue exposure. Drug Alcohol Depend 168:123–127

    Article  CAS  PubMed  Google Scholar 

  26. Meng Z, Liu C, Yu C et al (2014) Transcranial direct current stimulation of the frontal-parietal-temporal area attenuates smoking behavior. J Psychiatr Res 54:19–25

    Article  PubMed  Google Scholar 

  27. Xu J, Fregni F, Brody AL et al (2013) Transcranial direct current stimulation reduces negative affect but not cigarette craving in overnight abstinent smokers. Front Psych 4:112

    Google Scholar 

  28. Aronson Fischell S, Ross TJ, Deng Z-D et al (2020) Transcranial direct current stimulation applied to the dorsolateral and ventromedial prefrontal cortices in smokers modifies cognitive circuits implicated in the nicotine withdrawal syndrome. Biol Psychiatry Cogn Neurosci Neuroimaging 5:448–460

    PubMed  PubMed Central  Google Scholar 

  29. Batista EK, Klauss J, Fregni F et al (2015) A randomized placebo-controlled trial of targeted prefrontal cortex modulation with bilateral tDCS in patients with crack-cocaine dependence. Int J Neuropsychopharmacol 18:pyv066

    Article  PubMed  PubMed Central  Google Scholar 

  30. Conti CL, Nakamura-Palacios EM (2014) Bilateral transcranial direct current stimulation over dorsolateral prefrontal cortex changes the drug-cued reactivity in the anterior cingulate cortex of crack-cocaine addicts. Brain Stimul 7:130–132

    Article  PubMed  Google Scholar 

  31. Conti CL, Moscon JA, Fregni F et al (2014) Cognitive related electrophysiological changes induced by non-invasive cortical electrical stimulation in crack-cocaine addiction. Int J Neuropsychopharmacol 17:1465–1475

    Article  CAS  PubMed  Google Scholar 

  32. Gorini A, Lucchiari C, Russell-Edu W et al (2014) Modulation of risky choices in recently abstinent dependent cocaine users: a transcranial direct-current stimulation study. Front Hum Neurosci 8:661

    Article  PubMed  PubMed Central  Google Scholar 

  33. Boggio PS, Zaghi S, Villani AB et al (2010) Modulation of risk-taking in marijuana users by transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC). Drug Alcohol Depend 112:220–225

    Article  PubMed  Google Scholar 

  34. Shahbabaie A, Golesorkhi M, Zamanian B et al (2014) State dependent effect of transcranial direct current stimulation (tDCS) on methamphetamine craving. Int J Neuropsychopharmacol 17:1591–1598

    Article  CAS  PubMed  Google Scholar 

  35. Shahbabaie A, Hatami J, Farhoudian A et al (2018) Optimizing electrode montages of transcranial direct current stimulation for attentional bias modification in early abstinent methamphetamine users. Front Pharmacol 9:907

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shahbabaie A, Ebrahimpoor M, Hariri A et al (2018) Transcranial DC stimulation modifies functional connectivity of large-scale brain networks in abstinent methamphetamine users. Brain Behav 8:e00922

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang Y, Shen Y, Cao X et al (2016) Transcranial direct current stimulation of the frontal-parietal-temporal area attenuates cue-induced craving for heroin. J Psychiatr Res 79:1–3

    Article  CAS  PubMed  Google Scholar 

  38. Sharifi-Fardshad M, Mehraban-Eshtehardi M, Shams-Esfandabad H et al (2018) Modulation of drug craving in crystalline-heroin users by transcranial direct current stimulation of dorsolateral prefrontal cortex. Addict Health 10:173–179

    PubMed  PubMed Central  Google Scholar 

  39. O’Brien CP (2008) Evidence-based treatments of addiction. Philos Trans R Soc Lond Ser B Biol Sci 363:3277–3286

    Article  Google Scholar 

  40. Fraser PE, Rosen AC (2012) Transcranial direct current stimulation and behavioral models of smoking addiction. Front Psych 3

    Google Scholar 

  41. Nitsche MA, Lampe C, Antal A et al (2006) Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur J Neurosci 23:1651–1657

    Article  PubMed  Google Scholar 

  42. Borwick C, Lal R, Lim LW et al (2020) Dopamine depletion effects on cognitive flexibility as modulated by tDCS of the dlPFC. Brain Stimul 13:105–108

    Article  PubMed  Google Scholar 

  43. Krause B, Márquez-Ruiz J, Cohen Kadosh R (2013) The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Front Hum Neurosci 7:602

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liebetanz D, Nitsche MA, Tergau F et al (2002) Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125:2238–2247

    Article  PubMed  Google Scholar 

  45. Iyer PC, Rosenberg A, Baynard T et al (2019) Influence of neurovascular mechanisms on response to tDCS: an exploratory study. Exp Brain Res 237:2829–2840

    Article  PubMed  Google Scholar 

  46. Wachter D, Wrede A, Schulz-Schaeffer W et al (2011) Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Exp Neurol 227:322–327

    Article  PubMed  Google Scholar 

  47. Lu Y, Christian K, Lu B (2008) BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 89:312–323

    Article  CAS  PubMed  Google Scholar 

  48. Podda MV, Cocco S, Mastrodonato A et al (2016) Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Sci Rep 6:22180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fritsch B, Reis J, Martinowich K et al (2010) Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66:198–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Monai H, Hirase H (2018) Astrocytes as a target of transcranial direct current stimulation (tDCS) to treat depression. Neurosci Res 126:15–21

    Article  PubMed  Google Scholar 

  51. Schweid L, Rushmore RJ, Valero-Cabré A (2008) Cathodal transcranial direct current stimulation on posterior parietal cortex disrupts visuo-spatial processing in the contralateral visual field. Exp Brain Res 186:409–417

    Article  CAS  PubMed  Google Scholar 

  52. Márquez-Ruiz J, Leal-Campanario R, Sánchez-Campusano R et al (2012) Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc Natl Acad Sci U S A 109:6710–6715

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liebetanz D, Klinker F, Hering D et al (2006) Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia 47:1216–1224

    Article  PubMed  Google Scholar 

  54. Pedron S, Monnin J, Haffen E et al (2014) Repeated transcranial direct current stimulation prevents abnormal behaviors associated with abstinence from chronic nicotine consumption. Neuropsychopharmacology 39:981–988

    Article  CAS  PubMed  Google Scholar 

  55. Pedron S, Beverley J, Haffen E et al (2017) Transcranial direct current stimulation produces long-lasting attenuation of cocaine-induced behavioral responses and gene regulation in corticostriatal circuits. Addict Biol 22:1267–1278

    Article  CAS  PubMed  Google Scholar 

  56. Pedron S, Dumontoy S, Dimauro J et al (2020) Open-tES: an open-source stimulator for transcranial electrical stimulation designed for rodent research. PLoS One 15:e0236061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Paxinos G, Franklin KBJ (2007) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  58. Peanlikhit T, Van Waes V, Pedron S et al (2017) The antidepressant-like effect of tDCS in mice: a behavioral and neurobiological characterization. Brain Stimul 10:748–756

    Article  PubMed  Google Scholar 

  59. Datta A, Dmochowski JP, Guleyupoglu B et al (2013) Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study. NeuroImage 65:280–287

    Article  PubMed  Google Scholar 

  60. Mizrak E, Kim K, Roberts B et al (2018) Impact of oscillatory tDCS targeting left prefrontal cortex on source memory retrieval. Cogn Neurosci 9:194–207

    Article  PubMed  Google Scholar 

  61. Antal A, Boros K, Poreisz C et al (2008) Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul 1:97–105

    Article  PubMed  Google Scholar 

  62. Moret B, Donato R, Nucci M et al (2019) Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability. Sci Rep 9:15150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Gersner R, Kravetz E, Feil J et al (2011) Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity: differential outcomes in anesthetized and awake animals. J Neurosci 31:7521–7526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Van Waes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dumontoy, S., Etievant, A., Van Schuerbeek, A., Van Waes, V. (2022). Transcranial Direct Current Stimulation to Reduce Addiction-Related Behaviors in Mice. In: Aguilar, M.A. (eds) Methods for Preclinical Research in Addiction. Neuromethods, vol 174. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1748-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1748-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1747-2

  • Online ISBN: 978-1-0716-1748-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation