Assembly and Assessment of Prime Editing Systems for Precise Genome Editing in Plants

  • Protocol
  • First Online:
CRISPR-Cas Methods

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 2219 Accesses

Abstract

Prime editing, a CRISPR-Cas9-derived precise genome editing strategy, was recently developed to introduce targeted indels and all 12 types of point mutations without DNA double-strand breaks or donor DNA. The prime editing systems have been adopted for precision genome editing in crops including rice, wheat, maize, and tomato, which substantially expands the scope and capabilities of precision plant breeding. Here, we describe a fast and efficient method for construction of prime editing vectors based on Gateway assembly and efficiency assessment of prime editors through transient expression analyses in rice protoplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160. https://doi.org/10.1073/pnas.93.3.1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miller JC et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148. https://doi.org/10.1038/nbt.1755

    Article  CAS  PubMed  Google Scholar 

  3. **ek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lees-Miller SP, Meek K (2003) Repair of DNA double strand breaks by non-homologous end joining. Biochimie 85(11):1161–1173. https://doi.org/10.1016/j.biochi.2003.10.011

    Article  CAS  PubMed  Google Scholar 

  5. Sfeir A, Symington LS (2015) Microhomology-mediated end joining: a Back-up survival mechanism or dedicated pathway? Trends Biochem Sci 40(11):701–714. https://doi.org/10.1016/j.tibs.2015.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liang F, Han M, Romanienko PJ, Jasin M (1998) Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A 95(9):5172–5177. https://doi.org/10.1073/pnas.95.9.5172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jeggo PA (1998) DNA breakage and repair. Adv Genet 38:185–218

    Article  CAS  PubMed  Google Scholar 

  8. Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36(8):765–771. https://doi.org/10.1038/nbt.4192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gaudelli NM et al (2017) Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551(7681):464–471. https://doi.org/10.1038/nature24644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao D et al (2020) Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol 39(1):35–40. https://doi.org/10.1038/s41587-020-0592-2

    Article  CAS  PubMed  Google Scholar 

  12. Anzalone AV et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):7785. https://doi.org/10.1038/s41586-019-1711-4

    Article  CAS  Google Scholar 

  13. Liu Y, Kao H-I, Bambara RA (2004) Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem 73(1):589–615. https://doi.org/10.1146/annurev.biochem.73.012803.092453

    Article  CAS  PubMed  Google Scholar 

  14. Keijzers G, Bohr VA, Rasmussen LJ (2015) Human exonuclease 1 (EXO1) activity characterization and its function on flap structures. Biosci Rep 35(3):e00206. https://doi.org/10.1042/BSR20150058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang X et al (2020) Plant prime editors enable precise gene editing in Rice cells. Mol Plant 13(5):667–670. https://doi.org/10.1016/j.molp.2020.03.010

    Article  CAS  PubMed  Google Scholar 

  16. Lin Q et al (2020) Prime genome editing in rice and wheat. Nat Biotechnol 38(5):582–585. https://doi.org/10.1038/s41587-020-0455-x

    Article  CAS  PubMed  Google Scholar 

  17. Xu R, Li J, Liu X, Shan T, Qin R, Wei P (2020) Development of plant prime-editing systems for precise genome Editing. Plant Commun 1(3):100043. https://doi.org/10.1016/j.xplc.2020.100043

    Article  PubMed  PubMed Central  Google Scholar 

  18. Butt H, Rao GS, Sedeek K, Aman R, Kamel R, Mahfouz M (2020) Engineering herbicide resistance via prime editing in rice. Plant Biotechnol J 18(12):2370–2372. https://doi.org/10.1111/pbi.13399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li H, Li J, Chen J, Yan L, **a L (2020) Precise modifications of both exogenous and endogenous genes in rice by prime editing. Mol Plant 13(5):671–674. https://doi.org/10.1016/j.molp.2020.03.011

    Article  CAS  PubMed  Google Scholar 

  20. Xu W et al (2020) Versatile nucleotides substitution in plant using an improved prime editing system. Mol Plant 13(5):675–678. https://doi.org/10.1016/j.molp.2020.03.012

    Article  CAS  PubMed  Google Scholar 

  21. Lu Y et al (2020) Precise genome modification in tomato using an improved prime editing system. Plant Biotechnol J 19(3):415–417. https://doi.org/10.1111/pbi.13497

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chow RD, Chen JS, Shen J, Chen S (2021) A web tool for the design of prime-editing guide RNAs. Nat Biomed Eng 5:190–194. https://doi.org/10.1038/s41551-020-00622-8

    Article  CAS  PubMed  Google Scholar 

  23. Hsu JY et al (2020) PrimeDesign software for rapid and simplified design of prime editing guide RNAs. bioRxiv, p. 2020.05.04.077750. https://doi.org/10.1101/2020.05.04.077750

  24. “Automated design of CRISPR prime editors for thousands of human pathogenic variants | bioRxiv.” https://doi.org/10.1101/2020.05.07.083444v1. Accessed 26 Nov 2020

  25. Clement K et al (2019) CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol 37(3):224–226. https://doi.org/10.1038/s41587-019-0032-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park J, Lim K, Kim J-S, Bae S (2017) Cas-analyzer: an online tool for assessing genome editing results using NGS data. Bioinformatics 33(2):286–288. https://doi.org/10.1093/bioinformatics/btw561

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation Plant Genome Research Program (award no. IOS-1758745 and IOS-2029889) and the U.S. Department of Agriculture Biotechnology Risk Assessment Grant Program (award no. 2018-33522-28789 and 2020-33522-32274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi** Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sretenovic, S., Pan, C., Qi, Y. (2021). Assembly and Assessment of Prime Editing Systems for Precise Genome Editing in Plants. In: Islam, M.T., Molla, K.A. (eds) CRISPR-Cas Methods. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1657-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1657-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1656-7

  • Online ISBN: 978-1-0716-1657-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation