In Vitro Cas9 Cleavage Assay to Check Guide RNA Efficiency

  • Protocol
  • First Online:
CRISPR-Cas Methods

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 3342 Accesses

Abstract

The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated protein) system has become a popular toolkit for editing genomes of interest in a wide variety of organisms. The Cas9 endonuclease enzyme is targeted to a specific genomic region by a small single guide RNA (sgRNA). The cleavage efficiency of Cas9 varies greatly from one sgRNA to another sgRNA. Mutagenesis rate of a CRISPR-Cas experiment strongly depends on the sgRNA used. Presently accessible web-based tools for sgRNA design predict a wide variety of candidate sgRNAs for a single genomic target site. Despite these in silico predictions, not every sgRNA displays the same cleavage efficiency. To encounter this discrepancy, here, we present an in vitro method to screen multiple sgRNAs to identify the most suitable one that can efficiently introduce a double-stranded break at a particular genomic target site. This screening method allows a researcher to choose the best one among several online predicted sgRNAs prior to deliver genome editing reagents into live plant or animal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170

    Article  CAS  Google Scholar 

  2. **e K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR–Cas system. Mol Plant 6(6):1975–1983

    Article  CAS  Google Scholar 

  3. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S et al (2013) Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838

    Article  CAS  Google Scholar 

  4. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213)

    Google Scholar 

  5. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109(39):E2579–E2586

    Article  CAS  Google Scholar 

  6. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607

    Article  CAS  Google Scholar 

  7. **ek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  Google Scholar 

  8. Molla KA, Karmakar S, Islam MT (2020a) Wide horizons of CRISPR-Cas-derived technologies for basic biology, agriculture, and medicine. In: Islam, Bhowmik, Molla (eds) CRISPR-Cas methods. Humana, New York, NY, pp 1–23

    Google Scholar 

  9. Molla KA, Yang Y (2020b) Predicting CRISPR/Cas9-induced mutations for precise genome editing. Trends Biotechnol 38(2):136–141

    Article  CAS  Google Scholar 

  10. Sternberg SH, Redding S, **ek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62–67

    Article  CAS  Google Scholar 

  11. Butler ET, Chamberlin MJ (1982) Bacteriophage SP6-specific RNA polymerase. I. Isolation and characterization of the enzyme. J Biol Chem 257(10):5772–5778

    Article  CAS  Google Scholar 

  12. Davanloo P, Rosenberg AH, Dunn JJ, Studier FW (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 81(7):2035–2039

    Article  CAS  Google Scholar 

  13. Jorgensen ED, Joho K, Risman S, Moorefield MB, McAllister WT (1989) Promoter recognition by bacteriophage T3 and T7 RNA polymerases. DNA-protein interaction in transcription: 79–88

    Google Scholar 

  14. Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 12(18):7035–7056

    Article  CAS  Google Scholar 

  15. Krieg PA, Melton DA (1987) In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol 155:397–415

    Article  CAS  Google Scholar 

  16. Krieg PA, Melton DA (1984) Formation of the 3′ end of histone mRNA by post-transcriptional processing. Nature 308(5955):203–206

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We highly acknowledge the funding from Indian Council of Agricultural Research (ICAR), New Delhi, in the form of the Plan Scheme “Incentivizing Research in Agriculture” project and support from the Director, National Rice Research Institute (NRRI). SK would like to acknowledge financial support from the DBT-RA program in Biotechnology and Life Sciences of DBT, Government of India. Figures were made with Biorender.com. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kutubuddin A. Molla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Karmakar, S., Behera, D., Baig, M.J., Molla, K.A. (2021). In Vitro Cas9 Cleavage Assay to Check Guide RNA Efficiency. In: Islam, M.T., Molla, K.A. (eds) CRISPR-Cas Methods. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1657-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1657-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1656-7

  • Online ISBN: 978-1-0716-1657-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation