Mass Spectrometry-Based Shotgun Lipidomics Using Charge-Switch Derivatization for Analysis of Complex Long-Chain Fatty Acids

  • Protocol
  • First Online:
Mass Spectrometry-Based Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2306))

  • 1111 Accesses

Abstract

Charge-switch derivatization to convert long-chain fatty acids (LCFAs) to their N-(4-aminomethylphenyl) pyridinium (AMPP) derivatives (FA-AMPP derivative) drastically increases their sensitivity (>102) detected by electrospray ionization (ESI) or matrix assisted laser desorption ionization (MALDI). Lipidomic analyses of the FA-AMPP derivatives by ESI combined with CID tandem mass spectrometry (MS2), or by MALDI-TOF/TOF affords unambiguous structural characterization of LCFAs, including many unusual microbial LCFAs that contain various functional groups such as methyl, hydroxyl, cyclopropyl, and double bond(s). The ease of preparation of the FA-AMPP derivatives, the tremendous gain in sensitivity after derivatization, and more importantly, the readily recognizable product ion spectra that contain rich structurally informative fragment ions for locating functional groups make this method one of the most powerful techniques for LCFA identification and quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 99.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goren MB, Brokl O, Das BC, Lederer E (1971) SulfolipidI of Mycobaterium tuberculosis, strain H37Rv. Nature of the acyl substituents. Biochemistry 10:72–81

    Article  CAS  Google Scholar 

  2. Goren MB, Brokl O, Roller P, Fales HM, Das BC (1976) Sulfatides of Mycobacterium tuberculosis: the structure of the principal sulfatide (SL-I). Biochemistry 15(13):2728–2735. https://doi.org/10.1021/bi00658a003

    Article  CAS  PubMed  Google Scholar 

  3. Minnikin DE, Dobson G, Sesardic D, Ridell M (1985) Mycolipenates and mycolipanolates of trehalose from Mycobacterium tuberculosis. J Gen Microbiol 131(6):1369–1374. https://doi.org/10.1099/00221287-131-6-1369

    Article  CAS  PubMed  Google Scholar 

  4. Ariza MA, Martín-Luengo F, Valero-Guillén PL (1994) A family of diacyltrehaloses isolated from Mycobacterium fortuitum. Microbiology 140(8):1989–1994. https://doi.org/10.1099/13500872-140-8-1989

    Article  CAS  PubMed  Google Scholar 

  5. Frankfater C, Abramovitch RB, Purdy GE, Turk J, Legentil L, Lemiègre L, Hsu F-F (2019) Multiple-stage precursor ion separation and high resolution mass spectrometry toward structural characterization of 2,3-diacyltrehalose family from Mycobacterium tuberculosis. Separations 6(1):4

    Article  CAS  Google Scholar 

  6. Curr MI, Harwood JL, Frayn KN (2002) Lipid biochemistry: an introduction, 5th edn. Blackwell Science, Oxford, UK

    Google Scholar 

  7. Hsu F-F, Turk J (1999) Distinction among isomeric unsaturated fatty acids as lithiated adducts by electrospray ionization mass spectrometry using low energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 10(7):600–612. https://doi.org/10.1016/s1044-0305(99)00041-0

    Article  CAS  PubMed  Google Scholar 

  8. Hsu F-F, Turk J (2008) Elucidation of the double-bond position of long-chain unsaturated fatty acids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 19(11):1673–1680. https://doi.org/10.1016/j.jasms.2008.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jensen N, Gross M (1986) Fast atom bombardment and tandem mass spectrometry for determing iso- and anteiso-fatty acids. Lipids 21(5):362–365. https://doi.org/10.1007/bf02535702

    Article  CAS  Google Scholar 

  10. Jensen NJ, Tomer KB, Gross ML (1985) Collisional activation decomposition mass spectra for locating double bonds in polyunsaturated fatty acids. Anal Chem 57(11):2018–2021. https://doi.org/10.1021/ac00288a004

    Article  CAS  Google Scholar 

  11. Tomer KB, Crow FW, Gross ML (1983) Location of double-bond position in unsaturated fatty acids by negative ion MS/MS. J Am Chem Soc 105:5487–5488. https://doi.org/10.1021/ja00354a055

    Article  CAS  Google Scholar 

  12. Rhoades ER, Streeter C, Turk J, Hsu F-F (2011) Characterization of sulfolipids of Mycobacterium tuberculosis H37Rv by multiple-stage linear ion-trap high-resolution mass spectrometry with electrospray ionization reveals that the family of sulfolipid II predominates. Biochemistry 50(42):9135–9147. https://doi.org/10.1021/bi2012178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma X, Chong L, Tian R, Shi R, Hu TY, Ouyang Z, **a Y (2016) Identification and quantitation of lipid C=C location isomers: a shotgun lipidomics approach enabled by photochemical reaction. Proc Natl Acad Sci U S A 113(10):2573–2578

    Article  CAS  Google Scholar 

  14. Poad BLJ, Zheng X, Mitchell TW, Smith RD, Baker ES, Blanksby SJ (2018) Online ozonolysis combined with ion mobility-mass spectrometry provides a new platform for lipid isomer analyses. Anal Chem 90(2):1292–1300. https://doi.org/10.1021/acs.analchem.7b04091

    Article  CAS  PubMed  Google Scholar 

  15. Bollinger JG, Rohan G, Sadilek M, Gelb MH (2013) LC/ESI-MS/MS detection of FAs by charge reversal derivatization with more than four orders of magnitude improvement in sensitivity. J Lipid Res 54(12):3523–3530. https://doi.org/10.1194/jlr.D040782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bollinger JG, Thompson W, Lai Y, Oslund RC, Hallstrand TS, Sadilek M, Turecek F, Gelb MH (2010) Improved sensitivity mass spectrometric detection of eicosanoids by charge reversal derivatization. Anal Chem 82(16):6790–6796. https://doi.org/10.1021/ac100720p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang M, Han RH, Han X (2013) Fatty acidomics: global analysis of lipid species containing a carboxyl group with a charge-remote fragmentation-assisted approach. Anal Chem 85(19):9312–9320. https://doi.org/10.1021/ac402078p

    Article  CAS  PubMed  Google Scholar 

  18. Yang K, Dilthey BG, Gross RW (2013) Identification and quantitation of fatty acid double bond positional isomers: a shotgun lipidomics approach using charge-switch derivatization. Anal Chem 85(20):9742–9750. https://doi.org/10.1021/ac402104u

    Article  CAS  PubMed  Google Scholar 

  19. Tatituri RV, Wolf B, Brenner M, Turk J, Hsu F-F (2015) Characterization of polar lipids of Listeria monocytogenes by HCD and low-energy CAD linear ion-trap mass spectrometry with electrospray ionization. Anal Bioanal Chem 407(9):2519–2528. https://doi.org/10.1007/s00216-015-8480-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hsu F-F (2016) Characterization of hydroxyphthioceranoic and phthioceranoic acids by charge-switch derivatization and CID tandem mass spectrometry. J Am Soc Mass Spectrom 27(4):622–632

    Article  CAS  Google Scholar 

  21. Frankfater C, Jiang X, Hsu FF (2018) Characterization of long-chain fatty acid as N-(4-aminomethylphenyl) pyridinium derivative by MALDI LIFT-TOF/TOF mass spectrometry. J Am Soc Mass Spectrom 29(8):1688–1699

    Article  CAS  Google Scholar 

  22. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  Google Scholar 

  23. König W, Geiger R (1970) Eine neue Methode zur Synthese von Peptiden: Aktivierung der Carboxylgruppe mit Dicyclohexylcarbodiimid unter Zusatz von 1-Hydroxy-benzotriazolen. Chem Ber 103(3):788–798. https://doi.org/10.1002/cber.19701030319

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants P30DK020579, P30DK056341, and R24GM136766 to Mass Spectrometry Resource of Washington University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Frankfater, C., Hsu, FF. (2021). Mass Spectrometry-Based Shotgun Lipidomics Using Charge-Switch Derivatization for Analysis of Complex Long-Chain Fatty Acids. In: Hsu, FF. (eds) Mass Spectrometry-Based Lipidomics. Methods in Molecular Biology, vol 2306. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1410-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1410-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1409-9

  • Online ISBN: 978-1-0716-1410-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation