Microbial Electrochemical Cells and Introduction to Electron Transport in Microbial Biofilm

  • Protocol
  • First Online:
Analytical Methodologies for Biofilm Research

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 776 Accesses

Abstract

To generate energy, microbes use diverse mechanisms to transfer electrons. Microorganisms oxidize organic matters to produce electrons in electrochemical system. The microorganisms are related to the transferring of electrons that occur directly or indirectly. Microbial fuel cells have various applications. This chapter will summarize knowledge on microbial electrochemical systems, electron transport, and the diverse application of biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31(8):1796–1807

    Article  PubMed  CAS  Google Scholar 

  2. Harnisch F, Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39(11):4433–4448

    Article  CAS  PubMed  Google Scholar 

  3. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690

    Article  CAS  PubMed  Google Scholar 

  4. Rozendal RA, Hamelers HV, Rabaey K, Keller J, Buisman CJ (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459

    Article  CAS  PubMed  Google Scholar 

  5. Torres CI, Marcus AK, Lee HS, Parameswaran P, Krajmalnik-Brown R, Rittmann BE (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34(1):3–17

    Article  CAS  PubMed  Google Scholar 

  6. Angelaalincy MJ, Navanietha Krishnaraj R, Shakambari G, Ashokkumar B, Kathiresan S, Varalakshmi P (2018) Biofilm engineering approaches for improving the performance of microbial fuel cells and bioelectrochemical systems. Front Energy Res 6:63

    Article  Google Scholar 

  7. Jafary T, Daud WRW, Ghasemi M, Kim BH, Jahim JM, Ismail M, Lim SS (2015) Biocathode in microbial electrolysis cell; present status and future prospects. Renew Sust Energ Rev 47:23–33

    Article  CAS  Google Scholar 

  8. Zheng T, Li J, Ji Y, Zhang W, Fang Y, **n F, Dong W, Wei P, Ma J, Jiang M (2020) Progress and prospects of bioelectrochemical systems: electron transfer and its applications in the microbial metabolism. Front Bioeng Biotechnol 8:10

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF, Zhou J (2007) Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol 73(21):7003–7012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li H, Liao B, **ong J, Zhou X, Zhi H, Liu X, Li X, Li W (2018) Power output of microbial fuel cell emphasizing interaction of anodic binder with bacteria. J Power Sources 379:115–122

    Article  CAS  Google Scholar 

  11. Chouler J, Padgett GA, Cameron PJ, Preuss K, Titirici MM, Ieropoulos I, Di Lorenzo M (2016) Towards effective small scale microbial fuel cells for energy generation from urine. Electrochim Acta 192:89–98

    Article  CAS  Google Scholar 

  12. Ding A, Yang Y, Sun G, Wu D (2016) Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC). Chem Eng J 283:260–265

    Article  CAS  Google Scholar 

  13. Zhen G, Lu X, Kobayashi T, Kumar G, Xu K (2016) Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF). Chem Eng J 284:1146–1155

    Article  CAS  Google Scholar 

  14. Gildemyn S, Verbeeck K, Jansen R, Rabaey K (2017) The type of ion selective membrane determines stability and production levels of microbial electrosynthesis. Bioresour Technol 224:358–364

    Article  CAS  PubMed  Google Scholar 

  15. Santoro C, Soavi F, Serov A, Arbizzani C, Atanassov P (2016) Self-powered supercapacitive microbial fuel cell: the ultimate way of boosting and harvesting power. Biosens Bioelectron 78:229–235

    Article  CAS  PubMed  Google Scholar 

  16. Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19(6):564–571

    Article  CAS  PubMed  Google Scholar 

  17. Babauta J, Renslow R, Lewandowski Z, Beyenal H (2012) Electrochemically active biofilms: facts and fiction. A review. Biofouling 28(8):789–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan Y, Shin H, Kang C, Kim S (2016) Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells. Bioelectrochemistry 108:8–12

    Article  CAS  PubMed  Google Scholar 

  19. Masuda M, Freguia S, Wang YF, Tsujimura S, Kano K (2010) Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis. Bioelectrochemistry 78(2):173–175

    Article  CAS  PubMed  Google Scholar 

  20. Reguera G (2015) Microbes, cables, and an electrical touch. Int Microbiol 18(3):151–157

    CAS  PubMed  Google Scholar 

  21. Zheng S, Zhang H, Li Y, Zhang H, Wang O, Zhang J, Liu F (2015) Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron (III)-reducing enrichment culture. Front Microbiol 6:941

    PubMed  PubMed Central  Google Scholar 

  22. Hara KY, Kondo A (2015) ATP regulation in bioproduction. Microb Cell Factories 14(1):198

    Article  CAS  Google Scholar 

  23. Richter H, Nevin KP, Jia H, Lowy DA, Lovley DR, Tender LM (2009) Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ Sci 2(5):506–516

    Article  CAS  Google Scholar 

  24. Kracke F, Vassilev I, Kromer JO (2015) Microbial electron transport and energy conservation–the foundation for optimizing bioelectrochemical systems. Front Microbiol 6:575

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR (2011) Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One 6(2):16649

    Article  CAS  Google Scholar 

  26. Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Respiration of metal (hydr) oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65(1):12–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sturm G, Richter K, Doetsch A, Heide H, Louro RO, Gescher J (2015) A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. ISME J 9(8):1802–1811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Schroder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619–2629

    Article  PubMed  Google Scholar 

  29. Harrington TD, Tran VN, Mohamed A, Renslow R, Biria S, Orfe L, Call DR, Beyenal H (2015) The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction. Bioresour Technol 192:689–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pandit AV, Mahadevan R (2011) In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals. Microb Cell Factories 10(1):76

    Article  CAS  Google Scholar 

  31. Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65(7):2912–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I (2006) Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol 40(17):5193–5199

    Article  CAS  PubMed  Google Scholar 

  33. Yang Y, Ding Y, Hu Y, Cao B, Rice SA, Kjelleberg S, Song H (2015) Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth Biol 4(7):815–823

    Article  CAS  PubMed  Google Scholar 

  34. Anraku Y (1988) Bacterial electron transport chains. Annu Rev Biochem 57(1):101–132

    Article  CAS  PubMed  Google Scholar 

  35. Hernandez ME, Newman DK (2001) Extracellular electron transfer. Cell Mol Life Sci 58(11):1562–1571

    Article  CAS  PubMed  Google Scholar 

  36. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 102(1):324–333

    Article  CAS  PubMed  Google Scholar 

  38. Thrash JC, Coates JD (2008) Direct and indirect electrical stimulation of microbial metabolism. Environ Sci Technol 42(11):3921–3931

    Article  CAS  PubMed  Google Scholar 

  39. Breuer M, Rosso KM, Blumberger J, Butt JN (2015) Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. J R Soc Interface 12:102

    Article  CAS  Google Scholar 

  40. Mehta T, Coppi MV, Childers SE, Lovley DR (2005) Outer membrane c-type cytochromes required for Fe (III) and Mn (IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71(12):8634–8641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Di Domenico EG, Petroni G, Mancini D, Geri A, Palma LD, Ascenzioni F (2015) Development of electroactive and anaerobic ammonium-oxidizing (Anammox) biofilms from digestate in microbial fuel cells. Biomed Res Int 2015:351014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wrighton KC, Thrash JC, Melnyk RA, Bigi JP, Byrne-Bailey KG, Remis JP, Schichnes D, Auer M, Chang CJ, Coates JD (2011) Evidence for direct electron transfer by a Gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol 77(21):7633–7639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eaktasang N, Kang CS, Ryu SJ, Suma Y, Kim HS, Eaktasang N, Kang CS, Ryu SJ, Suma Yand Kim HS (2013) Enhanced current production by electroactive biofilm of sulfate-reducing bacteria in the microbial fuel cell. Environ Eng Res 18(4):277–281

    Article  Google Scholar 

  44. Proft T, Baker EN (2009) Pili in gram-negative and gram-positive bacteria—structure, assembly and their role in disease. Cell Mol Life Sci 66(4):613

    Article  CAS  PubMed  Google Scholar 

  45. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72(11):7345–7348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou M, Wang H, Hassett DJ, Gu T (2013) Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. J Chem Technol Biotechnol 88(4):508–518

    Article  CAS  Google Scholar 

  47. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. He CS, Mu ZX, Yang HY, Wang YZ, Mu Y, Yu HQ (2015) Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: a mini-review. Chemosphere 140:12–17

    Article  CAS  PubMed  Google Scholar 

  49. Orellana R, Leavitt JJ, Comolli LR, Csencsits R, Janot N, Flanagan KA, Gray AS, Leang C, Izallalen M, Mester T, Lovley DR (2013) U (VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens. Appl Environ Microbiol 79(20):6369–6374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40(10):3388–3394

    Article  CAS  PubMed  Google Scholar 

  51. Bermek H, Catal T, Akan SS, Ulutaş MS, Kumru M, Ozguven M, Liu H, Ozçelik B, Akarsubasi AT (2014) Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells. World J Microbiol Biotechnol 30(4):1177–1185

    Article  CAS  PubMed  Google Scholar 

  52. Kumar R, Singh L, Wahid ZA, Din MFM (2015) Exoelectrogens in microbial fuel cells toward bioelectricity generation: a review. Int J Energy Res 39(8):1048–1067

    Article  CAS  Google Scholar 

  53. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101

    Article  CAS  PubMed  Google Scholar 

  54. Oh ST, Kim JR, Premier GC, Lee TH, Kim C, Sloan WT (2010) Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv 28(6):871–881

    Article  CAS  PubMed  Google Scholar 

  55. Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39(12):4666–4671

    Article  CAS  PubMed  Google Scholar 

  56. Butler JE, Young ND, Lovley DR (2010) Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC Genomics 11(1):40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Commault AS, Lear G, Weld RJ (2015) Maintenance of Geobacter-dominated biofilms in microbial fuel cells treating synthetic wastewater. Bioelectrochemistry 106:150–158

    Article  CAS  PubMed  Google Scholar 

  58. Qu Y, Feng Y, Wang X, Logan BE (2012) Use of a coculture to enable current production by Geobacter sulfurreducens. Appl Environ Microbiol 78(9):3484–3487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao Z, Zhang Y, Wang L, Quan X (2015) Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion. Sci Rep 5:11094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wetser K, Sudirjo E, Buisman CJ, Strik DP (2015) Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Appl Energy 137:151–157

    Article  CAS  Google Scholar 

  61. Lin T, Ding W, Sun L, Wang L, Liu CG, Song H (2018) Engineered Shewanella oneidensis-reduced graphene oxide biohybrid with enhanced biosynthesis and transport of flavins enabled a highest bioelectricity output in microbial fuel cells. Nano Energy 50:639–648

    Article  CAS  Google Scholar 

  62. Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sharma, I., Bhattacharjee, S. (2021). Microbial Electrochemical Cells and Introduction to Electron Transport in Microbial Biofilm. In: Nag, M., Lahiri, D. (eds) Analytical Methodologies for Biofilm Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1378-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1378-8_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1377-1

  • Online ISBN: 978-1-0716-1378-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation