Purification of TET Proteins

  • Protocol
  • First Online:
TET Proteins and DNA Demethylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2272))

Abstract

The 5-methylcytosine (5mC) oxidation pathway mediated by TET proteins involves step-wise oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC can be removed from DNA by base excision repair and the completion of this pathway results in “demethylation” of 5mC by converting the modified base back into cytosine. In vitro studies with TET proteins aimed at analyzing their DNA substrate specificities and their activity within defined chromatin templates are relatively limited. Here we describe purification methods for mammalian TET proteins based on expression in insect cells or in 293T cells. We also briefly summarize a method that can be used to monitor 5-methylcytosine oxidase activity of the purified TET proteins in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18:517–534

    Article  CAS  Google Scholar 

  2. Iurlaro M, von Meyenn F, Reik W (2017) DNA methylation homeostasis in human and mouse development. Curr Opin Genet Dev 43:101–109

    Article  CAS  Google Scholar 

  3. Greenberg MVC, Bourc'his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607

    Article  CAS  Google Scholar 

  4. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  CAS  Google Scholar 

  5. Edwards JR, Yarychkivska O, Boulard M, Bestor TH (2017) DNA methylation and DNA methyltransferases. Epig Chrom 10:23

    Article  Google Scholar 

  6. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307

    Article  CAS  Google Scholar 

  7. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303

    Article  CAS  Google Scholar 

  8. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  Google Scholar 

  9. Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    Article  CAS  Google Scholar 

  10. Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286:35334–35338

    Article  CAS  Google Scholar 

  11. Iqbal K, ** SG, Pfeifer GP, Szabo PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 108:3642–3647

    Article  CAS  Google Scholar 

  12. Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M et al (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241

    Article  Google Scholar 

  13. Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA et al (2013) Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339:448–452

    Article  CAS  Google Scholar 

  14. Hahn MA, ** SG, Li AX, Liu J, Huang Z, Wu X et al (2019) Reprogramming of DNA methylation at NEUROD2-bound sequences during cortical neuron differentiation. Sci Adv 5:eaax0080

    Article  CAS  Google Scholar 

  15. Bogdanovic O, Smits AH, de la Calle Mustienes E, Tena JJ, Ford E, Williams R et al (2016) Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat Genet 48:417–426

    Article  CAS  Google Scholar 

  16. Hon GC, Song CX, Du T, ** F, Selvaraj S, Lee AY et al (2014) 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol Cell 56:286–297

    Article  CAS  Google Scholar 

  17. Sardina JL, Collombet S, Tian TV, Gomez A, Di Stefano B, Berenguer C et al (2018) Transcription factors drive Tet2-mediated enhancer demethylation to reprogram cell fate. Cell Stem Cell 23:727–741. e729

    Article  CAS  Google Scholar 

  18. Rasmussen KD, Jia G, Johansen JV, Pedersen MT, Rapin N, Bagger FO et al (2015) Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev 29:910–922

    Article  CAS  Google Scholar 

  19. Wang L, Ozark PA, Smith ER, Zhao Z, Marshall SA, Rendleman EJ et al (2018) TET2 coactivates gene expression through demethylation of enhancers. Sci Adv 4:eaau6986

    Article  CAS  Google Scholar 

  20. Song J, Pfeifer GP (2016) Are there specific readers of oxidized 5-methylcytosine bases? BioEssays 38:1038–1047

    Article  CAS  Google Scholar 

  21. ** SG, Kadam S, Pfeifer GP (2010) Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res 38:e125

    Article  Google Scholar 

  22. Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M et al (2009) Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114:144–147

    Article  CAS  Google Scholar 

  23. ** SG, Jiang Y, Qiu R, Rauch TA, Wang Y, Schackert G et al (2011) 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res 71:7360–7365

    Article  CAS  Google Scholar 

  24. An J, Rao A, Ko M (2017) TET family dioxygenases and DNA demethylation in stem cells and cancers. Exp Mol Med 49:e323

    Article  CAS  Google Scholar 

  25. Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W et al (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477:606–610

    Article  CAS  Google Scholar 

  26. Dai HQ, Wang BA, Yang L, Chen JJ, Zhu GC, Sun ML et al (2016) TET-mediated DNA demethylation controls gastrulation by regulating lefty-nodal signalling. Nature 538:528–532

    Article  Google Scholar 

  27. ** SG, Zhang ZM, Dunwell TL, Harter MR, Wu X, Johnson J et al (2016) Tet3 reads 5-Carboxylcytosine through its CXXC domain and is a potential Guardian against neurodegeneration. Cell Rep 14:493–505

    Article  CAS  Google Scholar 

  28. Zhang W, **a W, Wang Q, Towers AJ, Chen J, Gao R et al (2016) Isoform switch of TET1 regulates DNA demethylation and mouse development. Mol Cell 64:1062–1073

    Article  CAS  Google Scholar 

  29. Long HK, Blackledge NP, Klose RJ (2013) ZF-CxxC domain-containing proteins, CpG islands and the chromatin connection. Biochem Soc Trans 41:727–740

    Article  CAS  Google Scholar 

  30. Ko M, An J, Bandukwala HS, Chavez L, Aijo T, Pastor WA et al (2013) Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497:122–126

    Article  CAS  Google Scholar 

  31. Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A et al (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149:1368–1380

    Article  CAS  Google Scholar 

  32. Hahn MA, Li AX, Wu X, Pfeifer GP (2015) Single base resolution analysis of 5-methylcytosine and 5-hydroxymethylcytosine by RRBS and TAB-RRBS. Methods Mol Biol 1238:273–287

    Article  Google Scholar 

  33. Liu MY, Torabifard H, Crawford DJ, DeNizio JE, Cao XJ, Garcia BA et al (2017) Mutations along a TET2 active site scaffold stall oxidation at 5-hydroxymethylcytosine. Nat Chem Biol 13:181–187

    Article  CAS  Google Scholar 

  34. Hu L, Li Z, Cheng J, Rao Q, Gong W, Liu M et al (2013) Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155:1545–1555

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd P. Pfeifer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, Z., Yu, J., Johnson, J., **, SG., Pfeifer, G.P. (2021). Purification of TET Proteins . In: Bogdanovic, O., Vermeulen, M. (eds) TET Proteins and DNA Demethylation. Methods in Molecular Biology, vol 2272. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1294-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1294-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1293-4

  • Online ISBN: 978-1-0716-1294-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation